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Context

This Talk

systems and models of ecology

exempli�ed by the logistic map

Why at CMCS?

ecology
?↔ computer science

scienti�c modelling
?↔ coalgebra
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Context

Relation of Ecology and Computer Science

Wikipedia

Nothing too obvious, long term work. . .
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Scienti�c Modelling

What is Scienti�c Modelling?

Real systems are studied using models.

Models are stylized objects that resemble the system
in some properties considered essential.

Which properties are essential is determined by the context,
in particular by the scienti�c discipline.

Most model types employed in empirical disciplines
belong to either of two (dual?) paradigms.
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Model Types: State vs. Behavior

Ontological Dispute

State-based or behavior-based modelling?

Scienti�c disciplines are biased:
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Model Types: State vs. Behavior

Ontological Dispute

State-based or behavior-based modelling?

Scienti�c disciplines are biased:

Physics

State is fundamental (snapshots of reality)

Behavior is the e�ect of natural laws

Functional models de�ne variables and their dynamics

Problems prediction of state and inference of parameters
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Model Types: State vs. Behavior

Ontological Dispute

State-based or behavior-based modelling?

Scienti�c disciplines are biased:

Computer Science

Behavior is fundamental (speci�cations of technology)

State is the artifact of implementation

Interactive models de�ne interfaces and their protocols

Problems assessment of situations and planning of strategies
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Model Types: State vs. Behavior

Ecology

has no theoretical framework of its own,

is characterized by the interaction of living systems with their
environment,
hence

calls for both paradigms,
but

is traditionally dominated by physicalism (PDEsa etc.);
to the e�ect that

relevance and rigor often appear mutually exclusive.

aPartial Di�erential Equations
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Model Types: State vs. Behavior
Examples

Environment-Dominated

State soil / groundwater

Behavior runo� from watershed

Life-Dominated

Behavior annual tree growth

State carbon pool in forest
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Model Types: State vs. Behavior

Proposal: Formalize the Two Paradigms

state ↔ algebra

behavior ↔ coalgebra

exploit duality for unifying framework
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Logistic Map

De�nition [R. May, 1976, Nature]

discrete-time demographical model

simple real quadratic map

fr (x) = r · x · (1− x)

with real growth parameter r > 0

restricted to the unit interval I = [0, 1]

iteration produces complex behavior
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Logistic Map

Forward Dynamics

Trajectories for given initial value x0 and parameter r

x0, fr (x0), f
2
r (x0), . . . ∈ I

in�nite for r ≤ 4

eventually divergent for r > 4

all sorts of long-term dynamics:

stable/unstable �xpoints, stationary cycles,
deterministic chaos, strange attractors

test case for information/complexity measures [F. Wolf, 1999, Diss.]
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Logistic Map

Graph

r < 4 r > 4
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Logistic Map

Backward Dynamics

Each x has (at most) two preimages under fr

in�nite binary decision tree or

in�nite automaton

binary input, state space I
total for r ≥ 4

partial for r < 4:

states x > r/4 (global max) are error states
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Logistic Map

Finite Partitioning (Coloring)

c(x) =

{
0 x ∈ [0, 12)

1 x ∈ [12 , 1]

simple model of imperfect observation

generating partition of symbolic dynamics

complementary to fr :

neither c nor fr is invertible,
but 〈c, fr 〉 is
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Models as Homomorphisms

Modelling [R. Rosen, 1991, �Life Itself�]

Real1

Real2

Abstract1

Abstract2

causality computation

abstraction

abstraction

ti
m
e

Wanted abstraction that commutes with dynamics

Test round-trip ⇒ prediction

Hauhs, Trancón (Bayreuth) (Co)Algebra in Scienti�c Modelling CMCS2010 14 / 26



Models as Homomorphisms

Modelling [R. Rosen, 1991, �Life Itself�]

Real1

Real2

Abstract1

Abstract2

causality computation

abstraction

interpretation

ti
m
e

Wanted abstraction that commutes with dynamics

Test round-trip ⇒ prediction
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Models as Homomorphisms

Generalization: (Co)Algebras

F (

A2

) F (

B2

)

F (

A1

) F (

B1

)

-

F (

h

)

6

α

-

F (

h

)

6

β

Base Case trivial signature functor (identity)

Algebra signature F encodes model queries

Coalgebra signature F encodes model observations
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Models as Homomorphisms

Generalization: (Co)Algebras

F (

A2

) F (

B2

)

F (A2) F (B2)

-

F (

h

)

6

α

-
F (h)

6

β

Base Case trivial signature functor (identity)

Algebra signature F encodes model queries

Coalgebra signature F encodes model observations
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Models as Homomorphisms

Generalization: (Co)Algebras

F (A1) F (B1)

F (

A1

) F (

B1

)

-
F (h)

6

α

-

F (

h

)

6

β

Base Case trivial signature functor (identity)

Algebra signature F encodes model queries

Coalgebra signature F encodes model observations
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Taxonomy of Models

De�nition: A�ne Functor AA
B

Recursive structure: A-List with B-labelled end

AA
B = A× (−) + B

go : A× X → AA
B(X ) stop : B → AA

B(X )

Agenda

metaphors =⇒ formal calculus

all a�ne functors have initial algebras / �nal coalgebras

generate model types by instantiating A/B with simple sets

take cata-/anamorphisms as modelling maps ((co)induction)
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Taxonomy of Models
A�ne Functor AA

B

Initial Algebra (
A∗ × B, [α1, α2]

)
α1

(
a, (w , b)

)
=
(
cons(a,w), b

)
α2(b) = (nil, b)

Catamorphism

h :
(
A∗ × B, [α1, α2]

)
→
(
C , [γ1, γ2]

)
h
(
cons(a,w), b

)
= γ1

(
a, h(w , b)

)
h(nil, b) = γ2(b)
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Taxonomy of Models
A�ne Functor AA

B

Final Coalgebra (
A∗ × B ∪ Aω, φ

)
φ
(
cons(a,w), b

)
= go

(
a, (w , b)

)
φ(nil, b) = stop(b)

Anamorphism

h : (C , γ)→ (A∗ × B ∪ Aω, φ)

φ
(
h(c)

)
=

{
go
(
a, h(c ′)

)
if γ(c) = go(a, c ′)

stop(b) if γ(c) = stop(b)
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Taxonomy of Models
A�ne Functor AA

B

Instances

A1
B AA

1 AA
∅ A∅

B

:
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Taxonomy of Models
A�ne Functor AA

B

Instances

A1
B AA

1 AA
∅ A∅

B

Algebras: Iteration

General
(C , γ : 1× C + B → C )

γ ∼ (f , g) f : C → C g : B → C

Initial

(
N× B, (f0, g0)

)
1∗ ∼ N

f0(n, b) = (n + 1, b) g0(b) = (0, b)

Catamorphism ([γ]) i(n, b) = f n
(
g(b)

)
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Taxonomy of Models
A�ne Functor AA

B

Instances

A1
B AA

1 AA
∅ A∅

B

Algebras: List Folding

General
(C , γ : A× C + 1→ C )

γ ∼ (f , e) f : A× C → C e ∈ C

Initial

(
A∗, (cons, nil)

)

Catamorphism ([γ]) j
(
cons(a,w), b

)
= f
(
a, j(w)

)
j(nil) = e
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Taxonomy of Models
A�ne Functor AA

B

Instances

A1
B AA

1 AA
∅ A∅

B

Coalgebras: Stream Unfolding

General
(C , γ : C → A× C + ∅)

γ ∼ (h, t) h : C → A t : C → C

Final
(Aω, cons−1)

Anamorphism [(γ)] k(c) = cons
(
h(c), k(t(c))

)
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Taxonomy of Models
A�ne Functor AA

B

Instances

A1
B AA

1 AA
∅ A∅

B

Coalgebras: Degenerate

General
(C , γ : C → ∅× C + B)

γ ∼ t t : C → B

Final
(B, stop)

Anamorphism [(γ)] m = t

Hauhs, Trancón (Bayreuth) (Co)Algebra in Scienti�c Modelling CMCS2010 19 / 26



Model Instances

Functional, Deterministic

F = A1
B

B = I
C = I

f = fr g = idI

N× B C

F (N× B) F (C )

-i

6

-
F (i)

6(f ,g)

Given boundary (r) and exact initial (x0) conditions

Predict state after n steps

i(n, x0) = fr
n(x0)
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Model Instances

Functional, Nondeterministic

F = A1
B

B = PI
C = PI

f = Pfr g = idPI

N× B C

F (N× B) F (C )

-i

6

-
F (i)

6(f ,g)

Given boundary (r) and potential initial (x0) conditions

Predict state after n steps

i(n, x0) = Pfr n(x0)
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Model Instances

Functional, Probabilistic

F = A1
B

B = I∼
C = I∼

f = fr
∼ g = idI∼

N× B C

F (N× B) F (C )

-i

6

-
F (i)

6(f ,g)

Given boundary (r) and distribution (CCDFa) of initial (x0) conditions

Predict state after n steps

i(n, x0) = fr
∼n(x0)

aCumulative Continuous Distribution Function
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Model Instances

Inverse Functional

F = AA
1

A = 2

C = I 9 I
f (a, h) = fr |a ◦ h e = idI

N× B C

F (N× B) F (C )

-j

6

-
F (j)

6(f ,e)

fr |a(x) =

{
fr (x) if c(x) = a

unde�ned if c(x) 6= a

Given a �nite trace of colors

Solve for initial & �nal states

j(a1 . . . an) = fr |a1 ◦ · · · ◦ fr |an

limit n→∞?
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Model Instances

Interactive [Rutten, 2000]

F = AA
∅

A = 2

C = Jr

h = c t = fr

F (Jr ) F (2ω)

Jr 2
ω

-
F (k)

6(h,t)

-
k

6

Jr =
∞⋂
n=0

Pf nr (I) (r > 4⇒ Cantor dust)

Given the set of states not leading to termination

Represent their fully abstract behavior at interface c

k(x)(n) = c
(
f nr (x)

)
(k iso)
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Model Instances

Inverse Interactive (Work in Progress)

k iso =⇒
(
Jr , (c, fr )

)
�nal =⇒ (c, fr ) iso

(c, fr )
−1 : 2× Jr → Jr ' Jr → J2r

F (Jr ) F (2ω)

Jr 2
ω

?(c,fr )
−1

-
F (k)

-
k

6

Game solitaire with binary moves

Record a particular player's actual moves

Cover reached states by some subsystem (-coalgebra)

Describe subsystem axiomatically by modal logic

Attribute axioms as strategy to player

simple backward strategies have arbitrarily complicated
forward reconstructions
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Summary

Conclusion

Generate family of model types
(co)inductively from family of functors

functional�interactive mapped to algebra�coalgebra

functional & interactive models on par

counterexamples to arguments from complexity

toy examples work out �ne, so now for. . .
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Outlook

Current & Future Challenges

modal logic & ecosystem management

non-well-founded structures & open-ended evolution

information & complexity of behavior traces

de�nition of life

causality in biology
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