Applications of Algebra and Coalgebra in Scientific Modelling

Illustrated with the Logistic Map

M. Hauhs B. Trancón y Widemann

Ecological Modelling University of Bayreuth, D

Coalgebraic Methods in Computer Science 2010–03–26/28 Paphos, CY

Context

This Talk

- systems and models of ecology
- exemplified by the logistic map

Why at CMCS?

```
ecology \stackrel{?}{\leftrightarrow} computer science scientific modelling \stackrel{?}{\leftrightarrow} coalgebra
```

Context

Relation of Ecology and Computer Science

Nothing too obvious, long term work...

IT'S A CELL PHONE SHAPED LIKE AN OLD

MAN'S HEAD.

Scientific Modelling

What is Scientific Modelling?

- Real systems are studied using models.
- Models are stylized objects that resemble the system in some properties considered essential.
- Which properties are essential is determined by the context, in particular by the scientific discipline.
- Most model types employed in empirical disciplines belong to either of two (dual?) paradigms.

Ontological Dispute

- State-based or behavior-based modelling?
- Scientific disciplines are biased:

Ontological Dispute

- State-based or behavior-based modelling?
- Scientific disciplines are biased:

Physics

State is fundamental (snapshots of reality)

Behavior is the effect of natural laws

Functional models define variables and their dynamics

Problems prediction of state and inference of parameters

Ontological Dispute

- State-based or behavior-based modelling?
- Scientific disciplines are biased:

Computer Science

Behavior is fundamental (specifications of technology)

State is the artifact of implementation

Interactive models define interfaces and their protocols

Problems assessment of situations and planning of strategies

Ecology

- has no theoretical framework of its own,
- is characterized by the interaction of living systems with their environment,
 - hence
- calls for both paradigms,
 but
- is traditionally dominated by physicalism (PDEs^a etc.);
 to the effect that
- relevance and rigor often appear mutually exclusive.

^{*}Partial Differential Equations

Examples

Proposal: Formalize the Two Paradigms

```
\begin{array}{ccc} \mathsf{state} & \longleftrightarrow & \mathsf{algebra} \\ \mathsf{behavior} & \longleftrightarrow & \mathsf{coalgebra} \end{array}
```

• exploit duality for unifying framework

Definition [R. May, 1976, Nature]

- discrete-time demographical model
- simple real quadratic map

$$f_r(x) = r \cdot x \cdot (1 - x)$$

- with real **growth** parameter r > 0
- ullet restricted to the unit interval $\mathbb{I}=[0,1]$
- iteration produces complex behavior

Forward Dynamics

• Trajectories for given initial value x_0 and parameter r

$$x_0, f_r(x_0), f_r^2(x_0), \ldots \in \mathbb{I}$$

- infinite for $r \leq 4$
- eventually divergent for r > 4
- all sorts of long-term dynamics: stable/unstable fixpoints, stationary cycles, deterministic chaos, strange attractors
- test case for information/complexity measures [F. Wolf, 1999, Diss.]

Backward Dynamics

- Each x has (at most) two preimages under f_r
- infinite binary decision tree or
- \bullet infinite automaton binary input, state space $\mathbb I$
- total for $r \geq 4$
- partial for r < 4: states x > r/4 (global max) are error states

Finite Partitioning (Coloring)

$$c(x) = \begin{cases} 0 & x \in [0, \frac{1}{2}) \\ 1 & x \in [\frac{1}{2}, 1] \end{cases}$$

- simple model of imperfect observation
- generating partition of symbolic dynamics
- complementary to f_r : neither c nor f_r is invertible, but $\langle c, f_r \rangle$ is

Modelling [R. Rosen, 1991, "Life Itself"]

Wanted abstraction that commutes with dynamics

Test round-trip ⇒ prediction

Wanted abstraction that commutes with dynamics

Test round-trip ⇒ prediction

Generalization: (Co)Algebras

Base Case trivial signature functor (identity)

Algebra signature F encodes model queries

Coalgebra signature F encodes model observations

Generalization: (Co)Algebras

Base Case trivial signature functor (identity)

Algebra signature F encodes model queries

Coalgebra signature F encodes model observations

Generalization: (Co)Algebras

Base Case trivial signature functor (identity)

Algebra signature F encodes model queries

Coalgebra signature F encodes model observations

Definition: Affine Functor \mathcal{A}_B^A

Recursive structure: A-List with B-labelled end

$$\mathcal{A}_B^A = A \times (-) + B$$

$$\operatorname{\mathsf{go}}:A imes X o \mathcal{A}^A_B(X)$$
 $\operatorname{\mathsf{stop}}:B o \mathcal{A}^A_B(X)$

Agenda

- metaphors ⇒ formal calculus
- all affine functors have initial algebras / final coalgebras
- ullet generate model types by instantiating A/B with simple sets
- take cata-/anamorphisms as modelling maps ((co)induction)

Affine Functor \mathcal{A}_{B}^{A}

Initial Algebra

$$(A^* \times B, [\alpha_1, \alpha_2])$$

$$\alpha_1(a,(w,b)) = (\cos(a,w),b)$$
 $\alpha_2(b) = (\sin b)$

Catamorphism

$$h: (A^* \times B, [\alpha_1, \alpha_2]) \rightarrow (C, [\gamma_1, \gamma_2])$$

$$h(\cos(a, w), b) = \gamma_1(a, h(w, b))$$
 $h(\min, b) = \gamma_2(b)$

Affine Functor \mathcal{A}_{B}^{A}

Final Coalgebra

$$(A^* \times B \cup A^{\omega}, \phi)$$

$$\phi(\cos(a, w), b) = \gcd(a, (w, b))$$
 $\phi(\sin b) = \operatorname{stop}(b)$

Anamorphism

$$h: (C, \gamma) \rightarrow (A^* \times B \cup A^{\omega}, \phi)$$

$$\phi(h(c)) = \begin{cases} go(a, h(c')) & \text{if } \gamma(c) = go(a, c') \\ stop(b) & \text{if } \gamma(c) = stop(b) \end{cases}$$

Affine Functor $\mathcal{A}_{\mathcal{B}}^{\mathcal{A}}$

 \mathcal{A}_B^1

 \mathcal{A}_1^A

 $\mathcal{A}^A_{\varnothing}$

 $\mathcal{A}_{B}^{\varnothing}$

Affine Functor \mathcal{A}_{R}^{A}

Instances

$$\frac{\mathcal{A}_{B}^{1}}{B}$$

$$\mathcal{A}_1^A$$

$$\mathcal{A}^A_{\varnothing}$$

$$\mathcal{A}_B^{\varnothing}$$

$$\gamma \sim (f, g)$$

$$\gamma \sim (f, g)$$
 $f: C \to C$ $g: B \to C$

 $(C, \gamma: 1 \times C + B \rightarrow C)$

$$(\mathbb{N} \times B, (f_0, g_0))$$
$$f_0(n, b) = (n + 1, b)$$

$$egin{aligned} 1^* &\sim \mathbb{N} \ g_0(b) &= (0,b) \end{aligned}$$

Catamorphism (
$$[\gamma]$$
)
$$i(n,b) = f^n(g(b))$$

CMCS 2010

Affine Functor \mathcal{A}_{B}^{A}

Instances
$$A_B^1 \qquad A_A^A \qquad A_\varnothing \qquad A_B^\varnothing$$
 Algebras: List Folding
$$(C,\gamma:A\times C+1\to C) \qquad \qquad f:A\times C\to C \qquad e\in C$$
 Initial
$$(A^*,(\mathtt{cons},\mathtt{nil}))$$

j(nil) = e

Catamorphism ($[\gamma]$) j(cons(a, w), b) = f(a, j(w))

Affine Functor \mathcal{A}_B^A

Instances
$$\mathcal{A}_B^1 \qquad \mathcal{A}_1^A \qquad \underline{\mathcal{A}_{\varnothing}^A} \qquad \mathcal{A}_B^{\varnothing}$$

Coalgebras: Stream Unfolding
$$(C,\gamma:C\to A\times C+\varnothing)$$

$$h:C\to A \qquad t:C\to C$$
 Final
$$(A^\omega,\cos^{-1})$$

(Co)Algebra in Scientific Modelling

 $k(c) = \cos(h(c), k(t(c)))$

Anamorphism $[\gamma]$

CMCS 2010

Affine Functor \mathcal{A}_{B}^{A}

Instances ${\cal A}_B^1 \qquad {\cal A}_1^A \qquad {\cal A}_\varnothing^A \qquad {\cal A}_B^arnothing$

m=t

Anamorphism $[\gamma]$

Functional, Deterministic

$$F = \mathcal{A}_{B}^{1} \qquad C = \mathbb{I}$$

$$B = \mathbb{I} \qquad f = f_{r} \qquad g = id_{\mathbb{I}}$$

$$\mathbb{N} \times B \xrightarrow{i} C$$

$$\uparrow \qquad \uparrow (f,g)$$

$$F(\mathbb{N} \times B) \xrightarrow{F(i)} F(C)$$

Given boundary (r) and exact initial (x_0) conditions Predict state after n steps

$$i(n,x_0)=f_r^{\ n}(x_0)$$

Functional, Nondeterministic

$$F = \mathcal{A}_{B}^{1} \qquad C = \mathcal{P}\mathbb{I}$$

$$B = \mathcal{P}\mathbb{I} \qquad f = \mathcal{P}f_{r} \qquad g = \mathrm{id}_{\mathcal{P}\mathbb{I}}$$

$$| \qquad \uparrow \qquad \downarrow_{f(f, r)} \qquad f(f, r) \Rightarrow f(C)$$

Given boundary (r) and potential initial (x_0) conditions

Predict state after n steps

$$i(n,x_0) = \mathcal{P}f_r^n(x_0)$$

Functional, Probabilistic

Given boundary (r) and distribution (CCDF^a) of initial (x_0) conditions Predict state after n steps

$$i(n,x_0)=f_r^{-n}(x_0)$$

^aCumulative Continuous Distribution Function

Inverse Functional

$$F = \mathcal{A}_{1}^{A} \qquad C = \mathbb{I} \to \mathbb{I}$$

$$A = 2 \qquad f(a, h) = f_{r|a} \circ h \qquad e = id_{\mathbb{I}}$$

$$\mathbb{N} \times B \xrightarrow{j} C$$

$$\uparrow \qquad \uparrow (f, e)$$

$$F(\mathbb{N} \times B) \xrightarrow{F(j)} F(C)$$

$$f_r|_a(x) = \begin{cases} f_r(x) & \text{if } c(x) = a \\ \text{undefined} & \text{if } c(x) \neq a \end{cases}$$

Given a finite trace of colors

Solve for initial & final states

$$j(a_1 \ldots a_n) = f_r|_{a_1} \circ \cdots \circ f_r|_{a_n}$$

• limit $n \to \infty$?

CMCS 2010

Interactive [Rutten, 2000]

$$F = \mathcal{A}_{\varnothing}^{A} \qquad C = J_{r} \qquad F(J_{r}) \xrightarrow{F(k)} F(2^{\omega})$$

$$A = 2 \qquad h = c \qquad t = f_{r} \qquad f(h,t) \uparrow \qquad f(h,t) \downarrow \qquad f(h,t) \uparrow \qquad f(h,t) \downarrow \qquad$$

$$J_r = \bigcap_{n=0}^{\infty} \overline{\mathcal{P}} f_r^n(\mathbb{I}) \qquad (r > 4 \Rightarrow \mathsf{Cantor\ dust})$$

Given the set of states not leading to termination

Represent their fully abstract behavior at interface c

$$k(x)(n) = c(f_r^n(x)) \qquad (k \text{ iso})$$

Inverse Interactive (Work in Progress)

Game solitaire with binary moves

Record a particular player's actual moves

Cover reached states by some subsystem (-coalgebra)

Describe subsystem axiomatically by modal logic

Attribute axioms as **strategy** to player

simple backward strategies have arbitrarily complicated forward reconstructions

Summary

Conclusion

- Generate family of model types (co)inductively from family of functors
- functional-interactive mapped to algebra-coalgebra
- functional & interactive models on par
- counterexamples to arguments from complexity
- toy examples work out fine, so now for...

Outlook

Current & Future Challenges

- modal logic & ecosystem management
- non-well-founded structures & open-ended evolution
- information & complexity of behavior traces
- definition of life
- causality in biology

References

R.M. May (1976).

Simple mathematical models with very complicated dynamics. Nature 261(5560), pp. 459-467

R. Rosen (1991).

Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life. Columbia Press. New York.

F. Wolf (1999).

Berechnung von Information und Komplexität in Zeitreihen – Analyse des Wasserhaushaltes von bewaldeten Einzugsgebieten.

Dissertation, Universität Bayreuth.

J.J.M.M. Rutten (2000).

Universal coalgebra: a theory of systems.

Theor. Comp. Sci. 249(1), pp. 3-80.

B. Trancón y Widemann, M. Hauhs (2009).

Programming as a Model for the Theory of Ecosystems.

In J. Knoop, A. Prantl (eds.). Programmiersprachen und Grundlagen der Programmierung; Post-Proceedings KPS 2009. Technical Report 2009-XII-1, pp. 186–201. Institut für Computersprachen, Technische Universität Wien.