Coinduction in concurrent timed systems

Jan Komenda

Institute of Mathematics, Czech Academy of Sciences, Brno, Czech Republic

10th Workskop on Coalgebraic Methods in Computer Science (CMCS'10)

Paphos, Cyprus, March 28, 2010

Outline

- Mealy and weighted automata as coalgebras
- 2 Functional stream calculus
- (max,+)-automata and timed automata
 - (max,+)-automata algebraically
 - (max,+)- automata as coalgebras
- Synchronous composition
 - Algebraic definition
 - Coinductive definition
- Product Interval Automata
- 6 Conclusion

Outline

Mealy and weighted automata as coalgebras

- (max,+)-automata and timed automata
 - (max,+)-automata algebraically
 - (max,+)- automata as coalgebras
- - Algebraic definition
 - Coinductive definition

Coalgebra and automata theory

- Labelled transition systems (incl. timed) are coalgebras
- Various automata are coalgebras of suitable set functors
- Weighted automata (automata with multiplicities) are coalgebras
- Deterministic automata have simple final coalgebras: e.g. languages, formal power series (Moore automata)
- 2 ways of coding concurrency using weighted automata : nondeterminism (heap automata) and synchronous composition (like timed automata)
- Classes of timed automata (product interval automata) and corresponding classes of Petri nets
- Behaviors of synchronous compositions

Deterministic K-weighted automata as coalgebras

- Mealy automata (inputs in A, outputs in K) are coalgebras (S, t), S set of states, $t : S \to (K \times S)^A$ transition function.
- A partial MA is (S, t), where $t : S \to (1 + (K \times S))^A$ with $1 = \{\emptyset\}$.
- Partial Mealy automata are deterministic K-weighted automata with all states final
- A deterministic K-weighted automaton is viewed as partial Mealy automaton (S, t) above.
- Examples of multiplicity semirings :
 - $K = \mathbb{R}_{min} = (\mathbb{R} \cup \{\infty\}, min, +, \infty, 0) \dots (min, +)$ -automata (price)
 - $\mathbb{R}_{\max} = (\mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0) \dots (\max, +)$ -automata (time)
 - $K = \mathcal{I}_{max}^{max} = (\mathbb{R}_{max} \times \mathbb{R}_{max} \cup (-\infty, -\infty), \oplus, \otimes, (-\infty, -\infty), (0, 0))$... interval automaton
 - $(R^+, +, \times, 0, 1)$... stochastic automata (probability semiring)

Outline

Mealy and weighted automata as coalgebras

Functional stream calculus

- 3 (max,+)-automata and timed automata
 - (max,+)-automata algebraically
 - (max,+)- automata as coalgebras
- Synchronous composition
 - Algebraic definition
 - Coinductive definition
- Product Interval Automata
- 6 Conclusion

Stream coalgebra

Streams are infinite sequences over a set, e.g. a semiring $K = (K, \oplus, \otimes, 0, 1).$

 $(K^{\omega}, \langle head, tail \rangle)$ is the final coalgebra of $F(S) = K \times S$. Definition. For $s = (s(0), s(1), s(2), s(3), ...) \in K^{\omega}$: head(s) = s(0) and tail(s) = s' = (s(1), s(2), s(3), ...).

Other notation:

 $[r] = (r, 0, 0, \dots) \dots$ constant stream for $r \in K$. X = (0, 1, 0, ...) ... important to describe any stream

(max.+)-automata and timed automata

Final Mealy automaton

- Behaviors of Mealy automata are causal stream functions $f: A^{\omega} \to K^{\omega}$. $f: A^{\omega} \to K^{\omega}$ is *causal* if $\forall n \in \mathbb{N}, \sigma, \tau \in A^{\infty}$: $\forall i : i < n: \sigma(i) = \tau(i)$ then $f(\sigma)(n) = f(\tau)(n)$.
- Stream derivatives: $\omega = (\omega_0, \omega_1, \dots) \in K^{\omega}, \ \omega \to \omega' = (\omega_1, \dots).$
- Stream functions form final coalgebra of Mealy automata with $t(f) = \langle f[a], f_a \rangle f[a] = f(a : \sigma)(0)$ and $f_a(\sigma) = f(a : \sigma)'$
- For partial Mealy automata consider $f: A^{\omega} \rightarrow (1 + K)^{\omega}$ f is consistent if $\sigma \in A^{\omega}$: $f(\sigma)(k) = \emptyset$ then $f(\sigma)(n) = \emptyset$ for any n > k.
- $\mathcal{F} = (\mathcal{F}, t_{\mathcal{F}})$ is the final coalgebra of partial Mealy automata: $\mathcal{F} = \{f : A^{\omega} \to (1 + K)^{\omega} | f \text{ is causal and consistent} \}.$

$$t_{\mathcal{F}}(f)(a) = \left\{ egin{array}{cc} \langle f[a], f_a
angle & ext{if } f[a]
eq \emptyset \in \mathsf{1}, \ \emptyset & ext{otherwise}, \end{array}
ight.$$

٠

Equivalent presentation of behaviors

•
$$s_0 \stackrel{\sigma(0)|k_0}{\rightarrow} s_1 \stackrel{\sigma(1)|k_1}{\rightarrow} s_2 \cdots \stackrel{\sigma(n)|k_n}{\rightarrow} s_{n+1}$$
. We define
 $l(s_0)(\sigma)(n) = k_n.$

•
$$A^{\infty} = A^{\omega} \cup A^+$$
, where $A^+ = A^* \setminus \{\lambda\}$

F is isomorphic to functions between finite and infinite sequences!

 $\mathcal{F}_{\infty} = \{f : A^{\infty} \to K^{\infty} | f \text{ length preserving, causal, } dom(f) \text{ prefix-closed} \}$

• f[a] = f(a)(0) whenever f is defined for $a \in A$.

•
$$f_a: A^{\infty} \to (1 + K)^{\infty}$$
 given by $f_a(s) = f(a:s)^{\prime}$

 $t_{\mathcal{F}_{\infty}}(f)(a) = \begin{cases} \langle f[a], f_a \rangle & \text{if } f[a] \text{ is defined} \\ \text{undefined} & \text{otherwise,} \end{cases}$

Fundamental theorem of stream functionals

Fundamental theorem of stream calculus:

$$\sigma = \sigma(0) \oplus X \sigma'(0) \oplus X^2 \sigma''(0) \oplus \ldots$$

has its stream functional counterpart: **Theorem.** For any $f \in \mathcal{F}$ and $\sigma = (\sigma(0), \sigma(1), \ldots, \sigma(k), \ldots) \in A^{\omega}$ we have:

$$f(\sigma) = f(\sigma)(0) \oplus Xf_{\sigma(0)}(\sigma')(0) \oplus \ldots X^k f_{\sigma(0)\ldots,\sigma(k-1)}(\omega^{(k)})(0) \oplus \ldots$$

or equivalently,

$$f(\sigma) = f[\sigma(0)] \oplus Xf_{\sigma(0)}[\sigma(1)] \oplus \ldots X^k f_{\sigma(0)\ldots,\sigma(k-1)}[\sigma(k)] \oplus \ldots$$

Proposition.

- **1** For any $f \in \mathcal{F}_{\infty}$, $\omega \in A^{\infty}$, and $a \in A$: $f(a) : f_a(\omega) = f(a\omega)$.
- 2 More generally, for any $u \in A^+$ and $\omega \in A^\infty$: $f(u) : f_u(\omega) = f(u\omega)$.

Properties of stream functionals

Initial output is a particular partial stream functional defined by

$$f^{\infty}[a](\sigma) = \begin{cases} f[a] & \text{if } \sigma = a, \\ undefined & otherwise: \sigma \neq a, \end{cases}$$

Definition. For $f, g \in \mathcal{F}_{\infty}, \sigma = (\sigma(0) : \sigma') \in A^{\infty}$, and $a \in A$ we define

$$(f^{\infty}[a] \odot g)(\sigma(0) : \sigma') = \begin{cases} f(\sigma(0)) : g(\sigma') & \text{if } a = \sigma(0) \in dom(f), \\ \text{undefined} & \text{otherwise}, \end{cases}$$

Theorem 1. For any $f \in \mathcal{F}_{\infty}$ we have: $f = \bigoplus_{a \in A} f^{\infty}[a] \odot f_a$.

Theorem 2. For any $f \in \mathcal{F}_{\infty}$ and $a \in A$: $(f^{\infty}[a] \odot f)_a = f$

Outline

- 3 (max,+)-automata and timed automata
 - (max,+)-automata algebraically
 - (max,+)- automata as coalgebras
- - Algebraic definition
 - Coinductive definition

00000

Synchronous composition Pro

(max,+)-automata algebraically

<u>(max,+)</u>- automata

- (max,+) automata are $G = (Q, \alpha, t, \beta)$, where Q is a finite set of states, $\alpha : \mathbf{Q} \to \mathbb{R}_{max}$, $t : \mathbf{Q} \times \mathbf{A} \times \mathbf{Q} \to \mathbb{R}_{max}$, and $\beta : \mathbf{Q} \to \mathbb{R}_{max}$, called initial, transition, and final delays.
- Also: $G = (Q, A, q_0, Q_m, t)$, where
 - A set of discrete events.
 - q_0 initial state, Q_m subset of final or marked states,
 - $t: Q \times A \times Q \rightarrow \mathbb{R}_{max}$ transition function

Meaning: output value $t(q, a, q') \in \mathbb{R}_{max}$ corresponds to the duration of *a*-transition from *q* to q' and

 $t(q, a, q') = \varepsilon$ if there is no transition from q to q' labeled by a.

00000

Synchronous composition Pro

(max,+)-automata algebraically

Algebraic behaviors of (max,+)- automata

Formal power series with variables in A and coefficients in \mathbb{R}_{max} . $\mathbb{R}_{max}(A)$ isomorphic to $\{\omega : A^* \to \mathbb{R}_{max}\}$. **Behavior** of $G = \langle Q, A, q_0, Q_m, t \rangle$ for $w = a_1 \dots a_n \in A^*$:

 $I(G)(w) = \max_{a_1, \dots, a_n \in Q_m} (t(q_0, a_1, q_1) + t(q_1, a_2, q_2) + \dots + t(q_{n-1}, a_n, q_n)).$

I(G)(w) is the longest path corresponding to label w from the initial state to a final state.

Using the matrix formalism:

 $I(G)(w) = \alpha \otimes t(w) \otimes \beta.$

typically $\alpha = (e, \varepsilon, \dots, \varepsilon)$ and similarly for β

(max,+)-automata algebraically

Unambiguous and deterministic (max,+)- automata

- (max,+) automata are seemingly simple, still powerful model, cf. 1- safe (timed) Petri nets!
- A K-automaton is unambiguous if, for every word w, there is at most one successful path labeled by w.
- Unambiguous series: ∃unambiguous automaton recognizing it.
- Lombardy and Mairesse: unambiguous series are intersection of (max,+) and (min,+)-rational series
- Beyond unambiguous series equality and inequality is undecidable and no rational controllers exist!
- Decidable classes of timed automata : one clock timed automata (e.g. interval automata) and their synchronous products called product interval automata compositions

(max.+)-automata and timed automata 00

Synchronous composition Pro

(max,+)- automata as coalgebras

(max,+)- automata coalgebraically

det. (max,+)- automata $S = (S, t), t : S \rightarrow (1 + (\mathbb{R}_{max} \times S))^A$

A *homomorphism* between S = (S, t) and S' = (S', t') is $f : S \rightarrow S'$ s.t. $\forall s \in S$ and $\forall a \in A$: if $s \stackrel{a|b}{\rightarrow} s'$ then $f(s) \stackrel{a|b}{\rightarrow} f(s')$, i.e.:

$$(1 + (\mathbb{R}_{\max} \times S))^{A} \stackrel{t}{\longleftarrow} S$$

$$\downarrow F(f) \qquad f \qquad \downarrow$$

$$(1 + (\mathbb{R}_{\max} \times S'))^{A} \stackrel{t'}{\longleftarrow} S'$$

A *bisimulation* between S = (S, t) and S' = (S', t') is $R \subseteq S \times S'$ s.t. $\forall s \in S \text{ and } \forall s' \in S': \text{ if } \langle s, s' \rangle \in R \text{ then}$ (i) $\forall a \in A: s \stackrel{a}{\rightarrow} \text{iff } s' \stackrel{a}{\rightarrow}$ (ii) $\forall a \in A : s \stackrel{a|b}{\rightarrow} q \Rightarrow s' \stackrel{a|b'}{\rightarrow} q'$ s. t. $\langle q, q' \rangle \in R, b = b'$, and (iii) $\forall a \in A : s' \xrightarrow{a|b'} q' \Rightarrow s \xrightarrow{a|b} q$ such that $\langle q, q' \rangle \in R$, and b = b'.

16/43

00000

Synchronous composition Pro

(max,+)- automata as coalgebras

Behaviors of (max,+)-automata

Algebraic behaviors: formal power series

Coalgebraic behaviors: stream functions from \mathcal{F} .

 $\mathcal{F} = \{f : A^{\infty} \to \mathbb{R}^{\infty}_{max} | f \text{ length preserving, causal, } dom(f) \text{ prefix-closed} \}.$

Similar to timed languages: $L_t \subseteq (A \times \mathbb{R})^{\infty}$, but tailored to one clock timed automata!

Timed languages give the cumulated execution time of a sequence!

Stream functions give the duration of events in the sequence!

Outline

- Mealy and weighted automata as coalgebras
- 2 Functional stream calculus
- 3 (max,+)-automata and timed automata
 - (max,+)-automata algebraically
 - (max,+)- automata as coalgebras
- **4** Synchronous composition
 - Algebraic definition
 - Coinductive definition
- Product Interval Automata
- 6 Conclusion

Algebraic definition

Synchronous extensions of (max,+)-automata

Major problem : (max,+)-automata as a class of timed automata are **not closed** under synchronous composition!

Our Solution: using extended multi-event alphabets Let G_1 and G_2 be (max,+) automata over local alphabets A_1 and A_2 . Associated natural projections are denoted by: $P_1 : (A_1 \cup A_2)^* \to A_1^*$ et $P_2: (A_1 \cup A_2)^* \to A_2^*$. Boolean morphism matrices are needed:

$$[m{B} \mu(m{a})]_{ij} = \left\{egin{array}{cc} m{e}, & ext{if} & [\mu(m{a})]_{ij}
eq arepsilon \ arepsilon, & ext{else} \end{array}
ight.$$

To alleviate notation B(a) instead of $B\mu(a)$. This can be extended to words of A^* by:

$$B(a_1 \ldots a_n) = B(a_1) \ldots B(a_n).$$

If A is a matrix of dimension $m \times n$ and B a matrix of dimension $p \times q$ over a dioid, their tensor (Kronecker) product $A \otimes^t B$ is the matrix of dimension $mp \times nq$:

$$A \otimes^{t} B = \begin{bmatrix} a_{11}B & \cdots & a_{11}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}$$

In particular, for square matrices $A = (a_{ij})_{i,j=1}^n$ and $B = (b_{kl})_{k,l=1}^m$, $C = A \otimes^t B$ is a matrix of dimension $n.m \times n.m$ with

$$C_{ik,jl} = a_{ij} \otimes^t b_{kl}.$$

Algebraic definition

Synchronous composition using extended alphabets

Definition. (Synchronous product) Synchronous product of (max.+) automata $G_1 = (Q_1, A_1, \alpha_1, \mu_1, \beta_1)$ and $G_2 = (Q_2, A_2, \alpha_2, \mu_2, \beta_2)$, is (max,+) automaton defined over alphabet

$$\mathcal{A} = (\mathcal{A}_1 \cap \mathcal{A}_2) \cup (\mathcal{A}_1 \setminus \mathcal{A}_2)^* imes (\mathcal{A}_2 \setminus \mathcal{A}_1)^*$$

by

$$G_1 \| G_2 = \mathcal{G} = (O_1 \times O_2, \mathcal{A}, \alpha, \mu, \beta)$$

with $Q_1 \times Q_2$ state set, \mathcal{A} event set, $\alpha = \alpha_1 \otimes^t \alpha_2$ initial delays, $\mu: \mathcal{A}^* \to \mathbb{R}_{max}^{|\mathcal{Q}| \times |\mathcal{Q}|}$ morphism matrix and $\beta = \beta_1 \otimes^t \beta_2$ final delays. Morphism matrix :

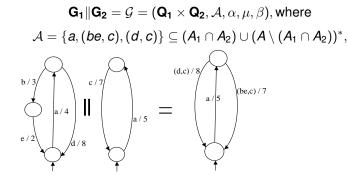
 $\mu(\mathbf{v}) = \begin{cases} \mu_1(\mathbf{v}) \otimes^t B_2(\mathbf{v}) \oplus B_1(\mathbf{v}) \otimes^t \mu_2(\mathbf{v}), & \text{if } \mathbf{v} = \mathbf{a} \in A_1 \cap A_2 \\ \mu_1(P_1(\mathbf{v})) \otimes^t B_2(P_2(\mathbf{v})) \oplus B_1(P_1(\mathbf{v})) \otimes^t \mu_2(P_2(\mathbf{v})), & \text{if } \mathbf{v} = (P_1(\mathbf{v}), P_2(\mathbf{v})) \end{cases}$

(max.+)-automata and timed automata

Synchronous composition Pro

Algebraic definition

Illustration of the synchronous product



 $\alpha = \alpha_1 \otimes^t \alpha_2, \beta = \beta_1 \otimes^t \beta_2$ and

$$\nu(\mathbf{v}) = \begin{cases} \mu_1(\mathbf{a}) \otimes^t B_2(\mathbf{a}) \oplus B_1(\mathbf{a}) \otimes^t \mu_2(\mathbf{a}), & \text{if } \mathbf{v} = \mathbf{a} \in A_1 \cap A_2 \\ \mu_1(\mathbf{b}\mathbf{e}) \otimes^t B_2(\mathbf{c}) \oplus B_1(\mathbf{b}\mathbf{e}) \otimes^t \mu_2(\mathbf{c}), & \text{if } \mathbf{v} = (\mathbf{b}\mathbf{e}, \mathbf{c}) \\ \mu_1(\mathbf{d}) \otimes^t B_2(\mathbf{c}) \oplus B_1(\mathbf{d}) \otimes^t \mu_2(\mathbf{c}), & \text{if } \mathbf{v} = (\mathbf{d}, \mathbf{c}) \end{cases}$$

Algebraic definition

Induced behavior

- Behaviors of $G_1 || G_2$ are formal power series of $\mathbb{R}_{\max}(\mathcal{A})$. From practical viewpoint (performance analysis, control) $I(G_1 || G_2)(w)$ for $w \in \mathcal{A}^*$ are more interesting (durations of tasks)
- Any $w \in A^*$ admits decomposition $w = v_0 a_1 v_1 \dots a_n v_n$, with $a_i \in A_1 \cap A_2$, $i = 1, \dots, n$ shared events and $v_i \in (A \setminus (A_1 \cap A_2))^*$, $i = 0, \dots, n$ private sequences.
- The local tasks of G_1 and G_2 corresponding to v_i are given by $P_1(v_i)$ et $P_2(v_i)$, resp.
- Any word from A^* can be seen as an element of A^* , namely

 $w = P_1(v_0) \times P_2(v_0).a_1P_1(v_1) \times P_2(v_1)...a_nP_1(v_n) \times P_2(v_n)$

• Morphism μ induces the matrix mapping $\nu: A^* \to \mathbb{R}_{max}$:

 $\nu(w) = \mu(P_1(v_0) \times P_2(v_0))\mu(a_1)\mu(P_1(v_1) \times P_2(v_1)) \dots \mu(a_n)\mu(P_1(v_n) \times P_2(v_n)).$

Algebraic definition

Induced behavior continued

Definition. Induced behavior of $G_1 || G_2$ is given by:

$$I(G_1 || G_2)(w) = \alpha \nu(w) \beta.$$

Notation: $Z = \{\nu, B\}$ with complement $\bar{\nu} = B$ and $\bar{B} = \nu$. Extension to words: $m = m^1 \dots m^k$, $\bar{m} = \bar{m}^1 \dots \bar{m}^k$. **Theorem.** Induced behavior of $G_1 || G_2$ for $w = v_0 a_1 v_1 \dots a_n v_n \in A^*$ is :

$$I(G_1||G_2)(w) = \bigoplus_{m \in \mathbb{Z}^{2n+1}} \alpha_1 m_1(P_1(w))\beta_1 \otimes \alpha_2 \overline{m}_2(P_2(w)) \otimes \beta_2.$$

Special case n=0.

 $l_1 || l_2 = l_1(P_1(w)) \otimes supp(l_2)(P_2(w)) \oplus l_2(P_2(w)) \otimes supp(l_1)(P_1(w)),$

because $supp(I_i)(P_i(w)) = \alpha_i B_i(P_i(w))\beta_i$ for i = 1, 2. Hint for better understanding. $L_1 || L_2 = P_1^{-1}(L_1) \cap P_2^{-1}(L_2)$, in terms of Boolean series:

$$L_1 \| L_2(w) = L_1(P_1w) \otimes L_2(P_2w).$$

(max.+)-automata and timed automata

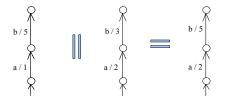
Synchronous composition Pro

Algebraic definition

Synchronous product of series: example

Example shows that there is no simple formula for $l_1 || l_2(w)$. Here, $l_1 = 1a \oplus 6ab$, $l_2 = 2a \oplus 5ab$, and $l_1 \parallel l_2 = 2a \oplus 7ab.$

Linear representations of I_i are needed!



Synchronous product defined by coinduction

For
$$I_i \in \mathcal{F}$$
 over A_i and $v_i = a_1 \dots a_k \in A_i^+$ we define for $i = 1, 2$:

$$(I_i)[v_i] = (I_i)[a_1] \otimes (I_i)_{a_1}[a_2] \otimes \cdots \otimes (I_i)_{a_1 \dots a_{k-1}}[a_k].$$

Definition. for $l_1, l_2 \in \mathcal{F}$ and $\forall v \in \mathcal{A}$:

$$(l_1||l_2)_{\nu} = (l_1)_{P_1(\nu)}||(l_2)_{P_2(\nu)} \text{ and } (l_1||l_2)[\nu] = l_1[P_1(\nu)] \otimes Bl_2[P_2(\nu)] \oplus Bl_1[P_1(\nu)] \otimes l_2[P_2(\nu)].$$

Special case with full synchronization $(A_1 = A_2)$: no need for using extended alphabet, in fact $A = A_1 = A_2$. For $v = a \in A$ we have in fact $P_1(v) = P_2(v) = a$. Hence,

$$(I_1 || I_2)_a = (I_1)_a || (I_2)_a$$

and $(I_1 || I_2)[a] = I_1[a] \otimes BI_2[a] \oplus BI_1[a] \otimes I_2[a]$.

Synchronous composition Pro

Coinductive definition

Synchronous product continued

Equivalent expression for first input:

$$(l_1||l_2)[v] = \begin{cases} \max(l_1[P_1(v)], l_2[P_2(v)]) & \text{if } l_i[P_i(v)] \neq \varepsilon \text{ for } i = 1, 2\\ \varepsilon & \text{else, i.e. } \exists i = 1, 2 : l_i[P_i(v)] = \varepsilon \end{cases}$$

Hint for understanding:

for partial languages $L_1 = (L_1^1, L_1^2), L_2 = (L_2^1, L_2^2)$, and $w \in A^*$ we have in fact

$$(L_1 || L_2)_w = (L_1)_{P_1(w)} || (L_2)_{P_2(w)}.$$

イロト イポト イヨト イヨト 二日 27/43

Behavior of synchronous product: example

$$(l_1 || l_2)(a) = (l_1 || l_2)(a)(0) = 5 = (l_1 || l_2)[a]$$

$$(l_1 \| l_2)(a(d,c)) = (l_1 \| l_2)(a(d,c))(0) \oplus X(l_1 \| l_2)_a(d,c).$$

Formulas for derivative and first output function yield:

 $(l_1 || l_2)_a(dc) = ((l_1)_a || (l_2)_a)(dc) = ((l_1)_a || (l_2)_a)(dc)(0) = ((l_1)_a || (l_2)_a)[dc]$

 $= (l_1)_a[d] \otimes B(l_2)_a[c] \oplus B(l_1)_a[d] \otimes (l_2)_a[c] = (l_1)(ad)(1) \otimes B(l_2)(ac)(1) \oplus (l_2)(ac)(1) \oplus (l_2)(a$

 $B(l_1)(ad)(1) \otimes (l_2)(ac)(1) = 8 \otimes 0 \oplus 0 \times 7 = 8.$

Note that $(l_1)_a[d] = (l_1)_a(d)(0) = (l_1)(a \cdot d)'(0) = (l_1)(ad)(1)$. Similarly.

 $(l_1 || l_2)(a(be, c)) = (l_1 || l_2)(a(be, c))(0) \oplus (l_1 || l_2)_a((be, c)),$ where

$$\begin{array}{rcl} (l_1 \| l_2)_a(be,c) & = & \cdots = (l_1)(a(be))(1) \otimes B(l_2)(ac)(1) \oplus \\ & & B(l_1)(a(be))(1) \otimes (l_2)(ac)(1) = 5 \otimes 0 \oplus 0 \times 7 = 7. \end{array}$$

Induced behavior example algebraically

- Induced behaviors translate series from $\mathbb{R}_{\max}(\mathcal{A})$, i.e. over \mathcal{A} into standard series from $\mathbb{R}_{\max}(A)$ and correspond to duration of distributed tasks
- In accordance with Proposition we obtain for w = abec the induced behavior

 $I(abec) = \alpha \nu(abec)\beta = \alpha \mu(a)\mu(be \times c)\beta = 5 + 7 = 12.$

• Similarly, for w = a(bec)a(cd) we obtain :

 $I(abecacd) = \alpha \nu(abecacd)\beta = \alpha \mu(a)\mu(be \times c)\mu(a)\mu(d \times c)\beta = 23.$

 Coalgebraic definition is for series and saves on complexity (no matrices)!

Extension to more local subsystems

For n=3 there are 4types of synchronizations: all the three and all couples of subsystems Hence, 5 types of multi-events (including no synchronization)

 $\mathcal{A} = (A_1 \cap A_2 \cap A_3) \cup (A_1 \cap A_2) \times (A_3 \setminus (A_1 \cup A_2))^* \cup (A_1 \cap A_3) \times (A_2 \setminus (A_1 \cup A_3))^* \cup (A_2 \cap A_3) \times (A_1 \setminus (A_2 \cup A_3))^*$

 $(A_1 \setminus (A_2 \cup A_3))^* \times (A_2 \setminus (A_1 \cup A_3))^* \times (A_3 \setminus (A_1 \cup A_2))^*$

Equivalently,

 $\mathcal{A} = (A_1 \cap A_2 \cap A_3) \times (A_1 \cap A_2 \cap A_3) \times (A_1 \cap A_2 \cap A_3) \cup (A_1 \cap A_2) \times (A_1 \cap A_2) \times (A_3 \setminus (A_1 \cup A_2))^*$

 $\cup (A_1 \cap A_3) \times (A_2 \setminus (A_1 \cup A_3))^* \times (A_1 \cap A_3) \cup (A_1 \setminus (A_2 \cup A_3))^* \times (A_2 \cap A_3) \times (A_2 \cap A_3)$

$$\cup (A_1 \setminus (A_2 \cup A_3))^* \times (A_2 \setminus (A_1 \cup A_3))^* \times (A_3 \setminus (A_1 \cup A_2))^*$$

 $v = a \in A_1 \cap A_2 \cap A_3$ is here $a \times a \times a$ $v = a \times v_3$ is here $a \times a \times v_3$.

Interpretation in terms of timed Petri nets

- Synchronous products of (max,+) automata correspond to safe Timed Petri nets formed in a compositional way from safe timed state graphs (timed machines)
- Local automata correspond to marking graphs of timed state graphs (no synchronization: each transition has 1 upstream and 1 downstream place)
- Synchronous composition models synchronization of timed state graphs via synchronizing transitions

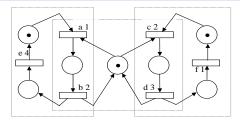
Mealy and weighted automata as coalgebras Functional stream calculus

(max,+)-automata and timed automata

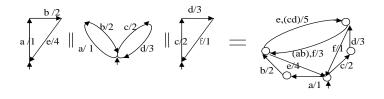
Synchronous composition Pro 000000000000000

Coinductive definition

Example of timed Petri nets



Corresponding automaton model is below:



Outline

- (max,+)-automata and timed automata
 - (max,+)-automata algebraically
 - (max,+)- automata as coalgebras
- - Algebraic definition
 - Coinductive definition
- Product Interval Automata

Timed automata and distributed interval automata

Timed automaton $\mathcal{A} = (S, A, C, t, s_0)$ with

- S...state set
- A ... event set
- C ... set of clocks

• $t \subset S \times A \times S \times EC \times 2^C \dots$ transition function

Transition labels: $Tr = \langle s, a, s', Cond, Z \rangle$, where s origin, s' destination, a event label, t can occur only if Cond = TRUE and the clocks in Z are reset. Syntax for enabling conditions (EC): $c \equiv k$, where $c \in C$, $k \in R$, and $\equiv \in \{<, >, \le, \ge, =\}$. Extended states: $(s, c) \subset S \times R^{\|C\|}$,

with s state and

c the current values of clocks.

(max.+)-automata and timed automata

Synchronous composition Pro

Distributed timed automata

Def. Composition of Timed automata Synchronous product of timed automata $R_i = (S_i, A_i, C_i, t_i, s_0^i), i = 1, ..., n$ is $||_{i=1^n} R_i = (S, A, C, t, s_0)$ with • $S = \times_{i-1^n} S_i$ • $A = \bigcup_{i=1n} A_i$ • $C = \bigcup_{i=1n} C_i$ • $s_0 = (s_0^i)_{i=1}^n$ • $t \subseteq S \times A \times S \times EC \times 2^C$ such that $(s, a, s', \delta, \lambda) \in t$, iff $(s_i, a, s'_i, \delta_i, \lambda_i) \in t_i$, where $s'_i = s_i$ for $a \in A_i$, $\delta = \delta_1 \wedge \delta_2$, and $\lambda = \lambda_1 \cup \lambda_2$.

Note. Regional construction is not compositional!

Interval Automata

Elementary classes of TA

- Product interval automata built by synchronous products of interval automata
- Interval based alphabet: $\Gamma = A \times IR$, with A finite alphabet and IR set of real intervals
- Definition of Interval automata

Interval automata are automata $R = (S, \Gamma, t, l, F)$ over (symbolic) interval based alphabet.

 IA are timed automata with a single clock reset after every transitions

Product Interval Automata

- $R = (S, \Gamma, t, I, F)$ may also be viewed as weighted automaton with weights in a suitable interval semiring.
- Interval semiring: $(\mathbb{R}_{\max} \times \mathbb{R}_{\max}, \oplus, \otimes)$ with

 $(l_1, u_1) \otimes (l_2, u_2) = (l_1 + l_2, u_1 + u_2)$ and

 $(l_1, u_1) \oplus (l_2, u_2) = (max(l_1, l_2), max(u_1, u_2))$

- Note that

 is only used in composition, not in local IA

 (deterministic)!
- Dual addition also needed in the composition:

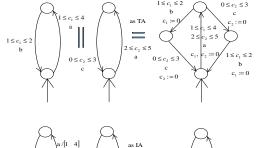
$$(l_1, u_1) \oplus' (l_2, u_2) = (max(l_1, l_2), min(u_1, u_2))$$

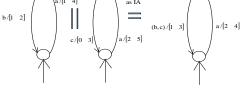
(max.+)-automata and timed automata

Synchronous composition Pro

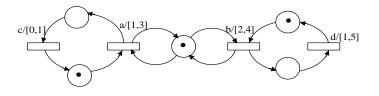
Composition of classes of timed automata

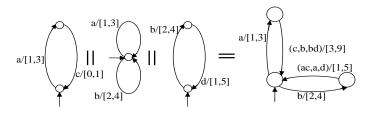
Definition. Synchronous products of interval automata. Clocks are read and reset compatible with event distribution!





Example.





Example continued.

$$\begin{array}{lll} \mu(a) &=& \mu_1(a) \otimes^t B_2(a) \otimes^t E_3 \oplus' B_1(a) \otimes^t \mu_2(a) \otimes^t E_3, \\ \mu(b) &=& E_1 \otimes^t \mu_2(b) \otimes^t B_3(b) \oplus' E_1 \otimes^t B_2(b) \otimes^t \mu_3(b), \\ \mu((c,b,bd)) &=& \mu_1(c) \otimes^t B_2(b) \otimes^t B_3(bd) \oplus B_1(c) \otimes^t \mu_2(b) \otimes^t B_3(bd) \oplus \\ B_1(c) \otimes^t B_2(b) \otimes^t \mu_3(bd), \\ \mu((ac,a,d)) &=& \mu_1(ac) \otimes^t B_2(a) \otimes^t B_3(d) \oplus B_1(ac) \otimes^t \mu_2(a) \otimes^t B_3(d) \oplus \\ B_1(ac) \otimes^t B_2(a) \otimes^t \mu_3(d) \end{array}$$

Interpretation of extended words:

 $w = acbdabdcbdac \in A^* \rightarrow w = a(c, b, bd)a(c, b, bd)b(ac, a, d)$ over A.

Synchronous composition Pro

Example coalgebraically.

Again, fundamental theorem gives for $\sigma \in \mathcal{A}^*$ and $v \in \mathcal{A}$

$$(I_1 ||I_2||I_3)(\sigma) = (I_1 ||I_2||I_3)(\sigma)(0) \oplus X(I_1 ||I_2||I_3)(\sigma)',$$

where

$$\{(l_1 || l_2 || l_3)(\sigma)\}' = (l_1 || l_2 || l_3)_{\sigma)(0)}(\sigma').$$

 $(l_1 || l_2 || l_3)_V = (l_1)_{P_1(V)} || (l_2)_{P_2(V)} || (l_3)_{P_3(V)}$ and

 $(I_1 ||_{l_2} ||_{l_3})[v] = I_1[P_1(v)] \otimes Bl_2[P_2(v)] \otimes Bl_3[P_3(v)] \oplus$

 $Bl_1[P_1(v)] \otimes l_2[P_2(v)] \otimes Bl_3[P_3(v)] \oplus Bl_1[P_1(v)] \otimes B_2[P_2(v)] \otimes l_3[P_3(v)]$ with \oplus replaced by \oplus' for shared actions v = a, b

Outline

- (max,+)-automata and timed automata
 - (max,+)-automata algebraically
 - (max,+)- automata as coalgebras
- - Algebraic definition
 - Coinductive definition

Concluding remarks

- Deterministic weighted automata as partial Mealy automata
- Composition of (max,+) automata
- Composition of Interval automata (PIA) and their properties
- Formulae for behavior of the synchronous product: algebraic vs. coalgebraic approach
- Supervisory control within behavioral framework
- Decentralized control of (classes) of timed automata