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Coalgebra and automata theory

Labelled transition systems (incl. timed) are coalgebras
Various automata are coalgebras of suitable set functors
Weighted automata (automata with multiplicities) are coalgebras
Deterministic automata have simple final coalgebras:
e.g. languages, formal power series (Moore automata)
2 ways of coding concurrency using weighted automata :
nondeterminism (heap automata) and synchronous composition
(like timed automata)
Classes of timed automata (product interval automata)
and corresponding classes of Petri nets
Behaviors of synchronous compositions
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Deterministic K-weighted automata as coalgebras

Mealy automata (inputs in A, outputs in K ) are coalgebras
(S, t), S set of states, t : S → (K × S)A transition function.
A partial MA is (S, t), where t : S → (1 + (K × S))A with 1 = {∅}.
Partial Mealy automata are deterministic K-weighted automata
with all states final
A deterministic K-weighted automaton is viewed as partial Mealy
automaton (S, t) above.
Examples of multiplicity semirings :

K = Rmin = (R ∪ {∞},min,+,∞, 0) . . . (min,+)-automata (price)
Rmax = (R ∪ {−∞},max,+,−∞, 0) . . . (max,+)-automata (time)
K = Imax

max = (Rmax × Rmax ∪ (−∞,−∞),⊕,⊗, (−∞,−∞), (0, 0))
. . . interval automaton
(R+,+,×, 0, 1). . . stochastic automata (probability semiring)
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Stream coalgebra

Streams are infinite sequences over a set, e.g. a semiring
K = (K ,⊕,⊗,0,1).

(Kω, 〈head , tail〉) is the final coalgebra of F (S) = K × S.
Definition. For s = (s(0), s(1), s(2), s(3), . . . ) ∈ Kω :
head(s) = s(0) and tail(s) = s′ = (s(1), s(2), s(3), . . . ).

Other notation:

[r ] = (r ,0,0, . . . ) . . . constant stream for r ∈ K .

X = (0,1,0, . . . ) . . . important to describe any stream
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Final Mealy automaton

Behaviors of Mealy automata are causal stream functions
f : Aω → Kω. f : Aω → Kω is causal if ∀n ∈ N, σ, τ ∈ A∞:
∀i : i ≤ n: σ(i) = τ(i) then f (σ)(n) = f (τ)(n).
Stream derivatives: ω = (ω0, ω1, . . . ) ∈ Kω, ω → ω′ = (ω1, . . . ).
Stream functions form final coalgebra of Mealy automata with
t(f ) = 〈f [a], fa〉 f [a] = f (a : σ)(0) and fa(σ) = f (a : σ)′

For partial Mealy automata consider f : Aω → (1 + K )ω

f is consistent if σ ∈ Aω: f (σ)(k) = ∅ then f (σ)(n) = ∅ for any
n > k .
F = (F , tF ) is the final coalgebra of partial Mealy automata:
F = {f : Aω → (1 + K )ω |f is causal and consistent}.

tF (f )(a) =

{
〈f [a], fa〉 if f [a] 6= ∅ ∈ 1,
∅ otherwise,
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Equivalent presentation of behaviors

s0
σ(0)|k0→ s1

σ(1)|k1→ s2 · · ·
σ(n)|kn→ sn+1 . We define

l(s0)(σ)(n) = kn.

A∞ = Aω ∪ A+, where A+ = A∗ \ {λ}
F is isomorphic to functions between finite and infinite
sequences!

F∞ = {f : A∞ → K∞|f length preserving, causal, dom(f ) prefix-closed}.

f [a] = f (a)(0) whenever f is defined for a ∈ A.
fa : A∞ → (1 + K )∞ given by fa(s) = f (a : s)′

tF∞(f )(a) =

{
〈f [a], fa〉 if f [a] is defined
undefined otherwise,
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Fundamental theorem of stream functionals

Fundamental theorem of stream calculus:

σ = σ(0)⊕ Xσ′(0)⊕ X 2σ′′(0)⊕ . . .

has its stream functional counterpart:
Theorem. For any f ∈ F and σ = (σ(0), σ(1), . . . , σ(k), . . . ) ∈ Aω we
have:

f (σ) = f (σ)(0)⊕ Xfσ(0)(σ′)(0)⊕ . . .X k fσ(0)...,σ(k−1)(ω
(k))(0)⊕ . . .

or equivalently,

f (σ) = f [σ(0)]⊕ Xfσ(0)[σ(1)]⊕ . . .X k fσ(0)...,σ(k−1)[σ(k)]⊕ . . .

Proposition.
1 For any f ∈ F∞, ω ∈ A∞, and a ∈ A: f (a) : fa(ω) = f (aω).
2 More generally, for any u ∈ A+ and ω ∈ A∞: f (u) : fu(ω) = f (uω).
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Properties of stream functionals

Initial output is a particular partial stream functional defined by

f∞[a](σ) =

{
f [a] if σ = a,
undefined otherwise: σ 6= a,

Definition. For f ,g ∈ F∞, σ = (σ(0) : σ′) ∈ A∞, and a ∈ A we define

(f∞[a]� g)(σ(0) : σ′) =

{
f (σ(0)) : g(σ′) if a = σ(0) ∈ dom(f ),
undefined otherwise,

Theorem 1. For any f ∈ F∞ we have: f =
⊕

a∈A f∞[a]� fa.

Theorem 2. For any f ∈ F∞ and a ∈ A: (f∞[a]� f )a = f
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(max,+)-automata algebraically

(max,+)- automata

(max,+) automata are G = (Q, α, t , β), where Q is a finite set of
states, α : Q → Rmax , t : Q × A×Q → Rmax , and β : Q → Rmax ,
called initial, transition, and final delays.
Also: G = (Q,A,q0,Qm, t) , where

A set of discrete events,
q0 initial state, Qm subset of final or marked states,
t : Q × A×Q → Rmax transition function

Meaning: output value t(q,a,q′) ∈ Rmax corresponds to the
duration of a−transition from q to q′ and

t(q,a,q′) = ε if there is no transition from q to q′ labeled by a.
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(max,+)-automata algebraically

Algebraic behaviors of (max,+)- automata

Formal power series with variables in A and coefficients in Rmax .
Rmax (A) isomorphic to {ω : A∗ → Rmax}.

Behavior of G = 〈Q,A,q0,Qm, t〉 for w = a1 . . . an ∈ A∗ :

l(G)(w) = max
q1,...,qn∈Q: qn∈Qm

(t(qo,a1,q1)+t(q1,a2,q2)+· · ·+t(qn−1,an,qn)).

l(G)(w) is the longest path corresponding to label w
from the initial state to a final state.

Using the matrix formalism:

l(G)(w) = α⊗ t(w)⊗ β,

typically α = (e, ε, . . . , ε) and similarly for β
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(max,+)-automata algebraically

Unambiguous and deterministic (max,+)- automata

(max,+) automata are seemingly simple, still powerful model, cf.
1- safe (timed) Petri nets!
A K-automaton is unambiguous if, for every word w , there is at
most one successful path labeled by w .
Unambiguous series: ∃unambiguous automaton recognizing it.
Lombardy and Mairesse: unambiguous series are intersection of
(max,+) and (min,+)-rational series
Beyond unambiguous series equality and inequality is
undecidable and no rational controllers exist!
Decidable classes of timed automata : one clock timed automata
(e.g. interval automata)
and their synchronous products called product interval automata
compositions
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(max,+)- automata as coalgebras

(max,+)- automata coalgebraically
det. (max,+)- automata S = (S, t), t : S → (1 + (Rmax × S))A

A homomorphism between S = (S, t) and S′ = (S′, t ′) is f : S → S′

s.t. ∀s ∈ S and ∀a ∈ A: if s
a|b→ s′ then f (s)

a|b→ f (s′), i.e.:

(1 + (Rmax × S))A �t
S

(1 + (Rmax × S′))A
?

F (f )

�t
′

S′

f

?

A bisimulation between S = (S, t) and S′ = (S′, t ′) is R ⊆ S × S′ s.t.
∀s ∈ S and ∀s′ ∈ S′: if 〈s, s′〉 ∈ R then

(i) ∀a ∈ A: s 6 a→ iff s′ 6 a→
(ii) ∀a ∈ A : s

a|b→ q ⇒ s′
a|b′→ q′ s. t. 〈q,q′〉 ∈ R,b = b′, and

(iii) ∀a ∈ A : s′
a|b′→ q′ ⇒ s

a|b→ q such that 〈q,q′〉 ∈ R, and b = b′.
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(max,+)- automata as coalgebras

Behaviors of (max,+)-automata

Algebraic behaviors: formal power series

Coalgebraic behaviors: stream functions from F .

F = {f : A∞ → R∞max|f length preserving, causal, dom(f ) prefix-closed}.

Similar to timed languages: Lt ⊆ (A× R)∞, but tailored to one clock
timed automata!

Timed languages give the cumulated execution time of a sequence!

Stream functions give the duration of events in the sequence!
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Algebraic definition

Synchronous extensions of (max,+)-automata

Major problem : (max,+)-automata as a class of timed automata are
not closed under synchronous composition!
Our Solution: using extended multi-event alphabets
Let G1 and G2 be (max,+) automata over local alphabets A1 and A2.
Associated natural projections are denoted by: P1 : (A1 ∪ A2)∗ → A∗1
et P2 : (A1 ∪ A2)∗ → A∗2. Boolean morphism matrices are needed:

[Bµ(a)]ij =

{
e, if [µ(a)]ij 6= ε
ε, else

To alleviate notation B(a) instead of Bµ(a).
This can be extended to words of A∗ by:

B(a1 . . . an) = B(a1) . . .B(an).
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Algebraic definition

Tensor linear algebra

If A is a matrix of dimension m × n and B a matrix of dimension p × q
over a dioid, their tensor (Kronecker) product A⊗t B is the matrix of
dimension mp × nq:

A⊗t B =

a11B · · · a11B
...

. . .
...

am1B · · · amnB


In particular, for square matrices A = (aij )

n
i,j=1 and B = (bkl )

m
k,l=1,

C = A⊗t B is a matrix of dimension n.m × n.m with

Cik,jl = aij ⊗t bkl .
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Algebraic definition

Synchronous composition using extended
alphabets

Definition. (Synchronous product)
Synchronous product of (max,+) automata
G1 = (Q1,A1, α1, µ1, β1) and G2 = (Q2,A2, α2, µ2, β2), is (max,+)
automaton defined over alphabet

A = (A1 ∩ A2) ∪ (A1 \ A2)∗ × (A2 \ A1)∗

by
G1‖G2 = G = (Q1 ×Q2,A, α, µ, β)

with Q1 ×Q2 state set, A event set, α = α1 ⊗t α2 initial delays,
µ : A∗ → R|Q|×|Q|max morphism matrix and β = β1 ⊗t β2 final delays.
Morphism matrix :

µ(v) =
{
µ1(v)⊗t B2(v)⊕ B1(v)⊗t µ2(v), if v = a ∈ A1 ∩ A2

µ1(P1(v))⊗t B2(P2(v))⊕ B1(P1(v))⊗t µ2(P2(v)), if v = (P1(v),P2(v)) ∈ (A \ A1)
∗ × (A \ A2))

∗
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Algebraic definition

Illustration of the synchronous product

G1‖G2 = G = (Q1 ×Q2,A, α, µ, β),where

A = {a, (be, c), (d , c)} ⊆ (A1 ∩ A2) ∪ (A \ (A1 ∩ A2))∗,
. 

(be,c) / 7 

(d,c) / 8 

c / 7 

a / 5 

e / 2 

b / 3 

d / 8 

a / 4 = 
a / 5 

α = α1 ⊗t α2, β = β1 ⊗t β2, and

ν(v) =


µ1(a)⊗t B2(a)⊕ B1(a)⊗t µ2(a), if v = a ∈ A1 ∩ A2

µ1(be)⊗t B2(c)⊕ B1(be)⊗t µ2(c), if v = (be, c)
µ1(d)⊗t B2(c)⊕ B1(d)⊗t µ2(c), if v = (d , c)
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Algebraic definition

Induced behavior

Behaviors of G1‖G2 are formal power series of Rmax(A).
From practical viewpoint (performance analysis, control)
l(G1‖G2)(w) for w ∈ A∗ are more interesting (durations of tasks)
Any w ∈ A∗ admits decomposition w = v0a1v1 . . . anvn, with
ai ∈ A1 ∩ A2, i = 1, . . . ,n shared events and
vi ∈ (A \ (A1 ∩ A2))∗, i = 0, . . . ,n private sequences.
The local tasks of G1 and G2 corresponding to vi are given by
P1(vi ) et P2(vi ), resp.
Any word from A∗ can be seen as an element of A∗, namely

w = P1(v0)× P2(v0).a1P1(v1)× P2(v1) . . . anP1(vn)× P2(vn)

Morphism µ induces the matrix mapping ν : A∗ → Rmax :
ν(w) = µ(P1(v0)×P2(v0))µ(a1)µ(P1(v1)×P2(v1)) . . . µ(an)µ(P1(vn)×P2(vn)).
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Algebraic definition

Induced behavior continued
Definition. Induced behavior of G1‖G2 is given by:

l(G1‖G2)(w) = αν(w)β.

Notation: Z = {ν,B} with complement ν̄ = B and B̄ = ν.
Extension to words: m = m1 . . .mk , m̄ = m̄1 . . . m̄k .
Theorem. Induced behavior of G1‖G2 for w = v0a1v1 . . . anvn ∈ A∗

is :

l(G1‖G2)(w) =
⊕

m∈Z 2n+1

α1m1(P1(w))β1 ⊗ α2m̄2(P2(w))⊗ β2.

Special case n=0.

l1‖l2 = l1(P1(w))⊗ supp(l2)(P2(w))⊕ l2(P2(w))⊗ supp(l1)(P1(w)),

because supp(li )(Pi (w)) = αiBi (Pi (w))βi for i = 1,2.
Hint for better understanding.
L1‖L2 = P−1

1 (L1) ∩ P−1
2 (L2), in terms of Boolean series:

L1‖L2(w) = L1(P1w)⊗ L2(P2w).
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Algebraic definition

Synchronous product of series: example
Example shows that there is no simple formula for l1‖l2(w).

Here, l1 = 1a⊕ 6ab, l2 = 2a⊕ 5ab, and
l1‖l2 = 2a⊕ 7ab.

Linear representations of li are needed!

a / 1 a / 2

b / 5 b / 3

a / 2

b / 5
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Coinductive definition

Synchronous product defined by coinduction

For li ∈ F over Ai and vi = a1 . . . ak ∈ A+
i we define for i = 1,2:

(li )[vi ] = (li )[a1]⊗ (li )a1 [a2]⊗ · · · ⊗ (li )a1...ak−1 [ak ].

Definition. for l1, l2 ∈ F and ∀v ∈ A:

(l1‖l2)v = (l1)P1(v)‖(l2)P2(v) and
(l1‖l2)[v ] = l1[P1(v)]⊗ Bl2[P2(v)]⊕ Bl1[P1(v)]⊗ l2[P2(v)].

Special case with full synchronization (A1 = A2): no need for using
extended alphabet, in fact A = A1 = A2.
For v = a ∈ A we have in fact P1(v) = P2(v) = a. Hence,

(l1‖l2)a = (l1)a‖(l2)a

and (l1‖l2)[a] = l1[a]⊗ Bl2[a]⊕ Bl1[a]⊗ l2[a].
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Coinductive definition

Synchronous product continued

Equivalent expression for first input:

(l1‖l2)[v ] =

{
max(l1[P1(v)], l2[P2(v)]) if li [Pi (v)] 6= ε for i = 1,2
ε else, i.e. ∃i = 1,2 : li [Pi (v)] = ε

Hint for understanding:

for partial languages L1 = (L1
1,L

2
1), L2 = (L1

2,L
2
2), and w ∈ A∗ we have

in fact
(L1‖L2)w = (L1)P1(w)‖(L2)P2(w).
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Coinductive definition

Behavior of synchronous product: example

(l1‖l2)(a) = (l1‖l2)(a)(0) = 5 = (l1‖l2)[a]

(l1‖l2)(a(d , c)) = (l1‖l2)(a(d , c))(0)⊕ X (l1‖l2)a(d , c).

Formulas for derivative and first output function yield:

(l1‖l2)a(dc) = ((l1)a‖(l2)a)(dc) = ((l1)a‖(l2)a)(dc)(0) = ((l1)a‖(l2)a)[dc]

= (l1)a[d ]⊗B(l2)a[c]⊕B(l1)a[d ]⊗(l2)a[c] = (l1)(ad)(1)⊗B(l2)(ac)(1)⊕

B(l1)(ad)(1)⊗ (l2)(ac)(1) = 8⊗ 0⊕ 0× 7 = 8.

Note that (l1)a[d ] = (l1)a(d)(0) = (l1)(a : d)′(0) = (l1)(ad)(1).
Similarly,
(l1‖l2)(a(be, c)) = (l1‖l2)(a(be, c))(0)⊕ (l1‖l2)a((be, c)), where

(l1‖l2)a(be, c) = · · · = (l1)(a(be))(1)⊗ B(l2)(ac)(1)⊕
B(l1)(a(be))(1)⊗ (l2)(ac)(1) = 5⊗ 0⊕ 0× 7 = 7.
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Coinductive definition

Induced behavior example algebraically

Induced behaviors translate series from Rmax(A), i.e. over A into
standard series from Rmax(A) and correspond to duration of
distributed tasks
In accordance with Proposition we obtain for w = abec the
induced behavior

l(abec) = αν(abec)β = αµ(a)µ(be × c)β = 5 + 7 = 12.

Similarly, for w = a(bec)a(cd) we obtain :

l(abecacd) = αν(abecacd)β = αµ(a)µ(be×c)µ(a)µ(d×c)β = 23.

Coalgebraic definition is for series and saves on complexity
(no matrices)!
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Coinductive definition

Extension to more local subsystems

For n=3 there are 4types of synchronizations: all the three and all
couples of subsystems
Hence, 5 types of multi-events (including no synchronization)

A = (A1∩A2∩A3)∪(A1∩A2)×(A3\(A1∪A2))
∗∪(A1∩A3)×(A2\(A1∪A3))

∗∪(A2∩A3)×(A1\(A2∪A3))
∗

(A1 \ (A2 ∪ A3))
∗ × (A2 \ (A1 ∪ A3))

∗ × (A3 \ (A1 ∪ A2))
∗

Equivalently,

A = (A1 ∩ A2 ∩ A3) × (A1 ∩ A2 ∩ A3) × (A1 ∩ A2 ∩ A3) ∪ (A1 ∩ A2) × (A1 ∩ A2) × (A3 \ (A1 ∪ A2))
∗

∪(A1 ∩ A3) × (A2 \ (A1 ∪ A3))
∗ × (A1 ∩ A3) ∪ (A1 \ (A2 ∪ A3))

∗ × (A2 ∩ A3) × (A2 ∩ A3)

∪(A1 \ (A2 ∪ A3))
∗ × (A2 \ (A1 ∪ A3))

∗ × (A3 \ (A1 ∪ A2))
∗

v = a ∈ A1 ∩ A2 ∩ A3 is here a× a× a
v = a× v3 is here a× a× v3.
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Coinductive definition

Interpretation in terms of timed Petri nets

Synchronous products of (max,+) automata correspond to safe
Timed Petri nets formed in a compositional way from safe timed
state graphs (timed machines)
Local automata correspond to marking graphs of timed state
graphs (no synchronization: each transition has 1 upstream and
1 downstream place)
Synchronous composition models synchronization of timed state
graphs via synchronizing transitions
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Coinductive definition

Example of timed Petri nets

 

d 3 

a 1 

f 1 

c 2 

b 2 

e 4 

Corresponding automaton model is below:

 

e,(cd)/5 

e/4 
(ab),f/3 f/1 

d/3 

b/2 

d/3 

c/2 b/2 

 a/1 

 f/1 c/2 
d/3 

c/2 

a/ 1 
e/4 a /1 

b /2 

Important feature: the same timing of synchronizing transitions
This can be solved using P-timed Petri Nets
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Timed automata and distributed interval automata

Timed automaton A = (S,A,C, t , s0) with
S . . . state set
A . . . event set
C . . . set of clocks
t ⊆ S × A× S × EC × 2C . . . transition function

Transition labels: Tr = 〈s,a, s′,Cond ,Z 〉, where
s origin, s′ destination, a event label,
t can occur only if Cond = TRUE and the clocks in Z are reset.
Syntax for enabling conditions (EC):
c ≡ k , where c ∈ C, k ∈ R, and ≡∈ {<,>,≤,≥,=}.
Extended states: (s, c) ⊆ S × R‖C‖,

with s state and
c the current values of clocks.
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Distributed timed automata

Def. Composition of Timed automata
Synchronous product of timed automata
Ri = (Si ,Ai ,Ci , ti , si

0), i = 1, . . . ,n is
‖i=1n Ri = (S,A,C, t , s0) with

S = ×i=1n Si

A =
⋃

i=1n Ai

C =
⋃

i=1n Ci

s0 = (si
0)n

i=1

t ⊆ S × A× S × EC × 2C such that
(s,a, s′, δ, λ) ∈ t , iff (si ,a, s′i , δi , λi ) ∈ ti , where s′i = si for a ∈ Ai ,
δ = δ1 ∧ δ2, and λ = λ1 ∪ λ2.

Note. Regional construction is not compositional!
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Interval Automata

Elementary classes of TA
Product interval automata built by synchronous products of
interval automata
Interval based alphabet: Γ = A× IR, with A finite alphabet and
IR set of real intervals
Definition of Interval automata
Interval automata are automata R = (S, Γ, t , I,F ) over (symbolic)
interval based alphabet.
IA are timed automata with a single clock reset after every
transitions
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Product Interval Automata

R = (S, Γ, t , I,F ) may also be viewed as weighted automaton
with weights in a suitable interval semiring.
Interval semiring: (Rmax × Rmax,⊕,⊗) with

(l1,u1)⊗ (l2,u2) = (l1 + l2,u1 + u2) and

(l1,u1)⊕ (l2,u2) = (max(l1, l2),max(u1,u2))

Note that ⊕ is only used in composition, not in local IA
(deterministic)!
Dual addition also needed in the composition:

(l1,u1)⊕
′

(l2,u2) = (max(l1, l2),min(u1,u2))
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Composition of classes of timed automata
Definition. Synchronous products of interval automata.
Clocks are read and reset compatible with event distribution! 

[ ]31/ c)(b,  [ ]42/a  

[ ]30/c  [ ]52/a  

[ ]41/a  

[ ]21/b  

0:c   

b       

21

1

1

=

≤≤ c

 

0  : c    

c       

30

2

2
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0  : c    

c       

30

2

2

=

≤≤ c

 
0:c   

b       

21

1

1

=
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0:  ,c

a       

52

41

21

2

1

=

≤≤
≤≤

c

c

c

 

b       

21 1 ≤≤ c
 

c       

30 2 ≤≤ c
 

a      

52 2 ≤≤ c

 

a      

41 1 ≤≤ c
 

 

as TA 

as IA 
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Example.

 

d/[1,5] 
c/[0,1] b/[2,4] a/[1,3] 

 

(c,b,bd)/[3,9] 

b/[2,4] 

(ac,a,d)/[1,5] 

b/[2,4] 

a/[1,3] 

d/[1,5] 

b/[2,4] 

a/[1,3] 

c/[0,1] 

a/[1,3] 

A = {a,b, (c,b,bd), (ac,a,d)}.
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Example continued.

µ(a) = µ1(a)⊗t B2(a)⊗t E3 ⊕′ B1(a)⊗t µ2(a)⊗t E3,

µ(b) = E1 ⊗t µ2(b)⊗t B3(b)⊕′ E1 ⊗t B2(b)⊗t µ3(b),

µ((c, b, bd)) = µ1(c)⊗t B2(b)⊗t B3(bd)⊕ B1(c)⊗t µ2(b)⊗t B3(bd)⊕
B1(c)⊗t B2(b)⊗t µ3(bd),

µ((ac, a, d)) = µ1(ac)⊗t B2(a)⊗t B3(d)⊕ B1(ac)⊗t µ2(a)⊗t B3(d)⊕
B1(ac)⊗t B2(a)⊗t µ3(d)

Interpretation of extended words:
w = acbdabdcbdac ∈ A∗ → w = a(c,b,bd)a(c,b,bd)b(ac,a,d)
over A.
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Example coalgebraically.

Again, fundamental theorem gives for σ ∈ A∗ and v ∈ A

(l1‖l2‖l3)(σ) = (l1‖l2‖l3)(σ)(0)⊕ X (l1‖l2‖l3)(σ)′,

where
{(l1‖l2‖l3)(σ)}′ = (l1‖l2‖l3)σ)(0)(σ

′).

(l1‖l2‖l3)v = (l1)P1(v)‖(l2)P2(v)‖(l3)P3(v) and

(l1‖l2‖l3)[v ] = l1[P1(v)]⊗ Bl2[P2(v)]⊗ Bl3[P3(v)]⊕

Bl1[P1(v)]⊗ l2[P2(v)]⊗ Bl3[P3(v)]⊕ Bl1[P1(v)]⊗ B2[P2(v)]⊗ l3[P3(v)]
with ⊕ replaced by ⊕′ for shared actions v = a,b
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Concluding remarks

Deterministic weighted automata as partial Mealy automata
Composition of (max,+) automata
Composition of Interval automata (PIA) and their properties
Formulae for behavior of the synchronous product: algebraic vs.
coalgebraic approach
Supervisory control within behavioral framework
Decentralized control of (classes) of timed automata
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