
Recursive Program Schemes with Effects

Daniel Schwencke, 28th March 2010



Outline

1 Introduction

2 Preliminaries and Definitions

3 A Solution Theorem

4 Future Work

D. Schwencke: Recursive Program Schemes with Effects



RPSs

Idea: define new operations using given operations and recursion

Definition (RPS without effects, classical)

disjoint finite sets F – given operation symbols
Φ – new operation symbols
X – variables

φ(x1, . . . , xn) ≈ tφ(x1, . . . , xn) for all φ ∈ Φn, tφ term in F ∪Φ

Example ([Milius Moss 06])

φ(x) ≈ f (x , φ(gx))

ψ(x) ≈ f (φ(gx), ggx)

Generalising category-theoretic approach in
[Ghani Lüth de Marchi 03, Milius Moss 06]

D. Schwencke: Recursive Program Schemes with Effects



RPSs

Idea: define new operations using given operations and recursion

Definition (RPS without effects, classical)

disjoint finite sets F – given operation symbols
Φ – new operation symbols
X – variables

φ(x1, . . . , xn) ≈ tφ(x1, . . . , xn) for all φ ∈ Φn, tφ term in F ∪Φ

Example ([Milius Moss 06])

φ(x) ≈ f (x , φ(gx))

ψ(x) ≈ f (φ(gx), ggx)

Generalising category-theoretic approach in
[Ghani Lüth de Marchi 03, Milius Moss 06]

D. Schwencke: Recursive Program Schemes with Effects



RPSs

Idea: define new operations using given operations and recursion

Definition (RPS without effects, classical)

disjoint finite sets F – given operation symbols
Φ – new operation symbols
X – variables

φ(x1, . . . , xn) ≈ tφ(x1, . . . , xn) for all φ ∈ Φn, tφ term in F ∪Φ

Example ([Milius Moss 06])

φ(x) ≈ f (x , φ(gx))

ψ(x) ≈ f (φ(gx), ggx)

Generalising category-theoretic approach in
[Ghani Lüth de Marchi 03, Milius Moss 06]

D. Schwencke: Recursive Program Schemes with Effects



ND-RPSs

Idea: add non-deterministic choice on rhs of formal equations

special binary operation symbol or 6∈ F ∪ Φ

terms tφ in F ∪ Φ ∪ {or}
see [Arnold Nivat 77]

Example

pow(x) ≈ x or (x · pow(x))

More generally: RPSs with effects

partiality

non-determinism

probabilism

D. Schwencke: Recursive Program Schemes with Effects



ND-RPSs

Idea: add non-deterministic choice on rhs of formal equations

special binary operation symbol or 6∈ F ∪ Φ

terms tφ in F ∪ Φ ∪ {or}
see [Arnold Nivat 77]

Example

pow(x) ≈ x or (x · pow(x))

More generally: RPSs with effects

partiality

non-determinism

probabilism

D. Schwencke: Recursive Program Schemes with Effects



ND-RPSs

Idea: add non-deterministic choice on rhs of formal equations

special binary operation symbol or 6∈ F ∪ Φ

terms tφ in F ∪ Φ ∪ {or}
see [Arnold Nivat 77]

Example

pow(x) ≈ x or (x · pow(x))

More generally: RPSs with effects

partiality

non-determinism

probabilism

D. Schwencke: Recursive Program Schemes with Effects



A Starting Point

Assumptions

(M, ηM , µM) monad on Set

H, V finitary Set-functors

distributive laws λ : HM → MH and ν : VM → MV

⇒ induced distributive law ρ : (H + V )M → M(H + V )

Meaning:

M – effect, e. g. + 1, P, D
H, V – “signatures” of given/new operations

λ, ν, ρ – extension of operations to parameters with effects

D. Schwencke: Recursive Program Schemes with Effects



A Starting Point

Assumptions

(M, ηM , µM) monad on Set

H, V finitary Set-functors

distributive laws λ : HM → MH and ν : VM → MV

⇒ induced distributive law ρ : (H + V )M → M(H + V )

Meaning:

M – effect, e. g. + 1, P, D
H, V – “signatures” of given/new operations

λ, ν, ρ – extension of operations to parameters with effects

D. Schwencke: Recursive Program Schemes with Effects



A First Lemma

Notation:

(F G , ηG , µG ) free monad on G

universal natural transformation κG : G → F G

T monad, σ : G → T . Then
σ# : F G → T unique monad morphism such that σ# · κG = σ

Lemma

If G has free algebras, every distributive law δ : GM → MG
induces a distributive law δ′ : F G M → MF G .

⇒ composite monad (MF G , ηMF G · ηG , (µM ∗ µG ) ·Mδ′F G )

D. Schwencke: Recursive Program Schemes with Effects



A First Lemma

Notation:

(F G , ηG , µG ) free monad on G

universal natural transformation κG : G → F G

T monad, σ : G → T . Then
σ# : F G → T unique monad morphism such that σ# · κG = σ

Lemma

If G has free algebras, every distributive law δ : GM → MG
induces a distributive law δ′ : F G M → MF G .

⇒ composite monad (MF G , ηMF G · ηG , (µM ∗ µG ) ·Mδ′F G )

D. Schwencke: Recursive Program Schemes with Effects



RPSs with Effects

Definition

M-RPS e : V → MF H+V

guarded if e ≡ V
e0−→ M(HF H+V + Id)

...−→ MF H+V

(uninterpreted) solution of e e† : V → MF H such that
e† = µMF H ·M[ηMF H · ηH , e†]# · e

Example

For pow(x) ≈ x or (x · pow(x)) take M = P, V = Id, H = Id2

eX (x) = {x , x · pow(x)}
guarded since x ∈ Id(X ) and x · pow(x) ∈ HF H+V X

e†X (x) = {x , x · x , x · (x · x), x · (x · (x · x)), . . . } is a solution

D. Schwencke: Recursive Program Schemes with Effects



RPSs with Effects

Definition

M-RPS e : V → MF H+V

guarded if e ≡ V
e0−→ M(HF H+V + Id)

...−→ MF H+V

(uninterpreted) solution of e e† : V → MF H such that
e† = µMF H ·M[ηMF H · ηH , e†]# · e

Example

For pow(x) ≈ x or (x · pow(x)) take M = P, V = Id, H = Id2

eX (x) = {x , x · pow(x)}
guarded since x ∈ Id(X ) and x · pow(x) ∈ HF H+V X

e†X (x) = {x , x · x , x · (x · x), x · (x · (x · x)), . . . } is a solution

D. Schwencke: Recursive Program Schemes with Effects



What We Would Like to Prove. . .

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ′ we obtain

a functor H = H · + Id on [Set,Set];

a monad M = (M · , ηM , µM ) on [Set,Set];

a distributive law Λ = [M inl,M inr] · (λ + ηM) : HM→MH;

equivalently, a lifting H̄ of H to [Set,Set]M;

the canonical functor J : [Set,Set]→ [Set,Set]M;

a monad HF H+V with distributive law over M.

D. Schwencke: Recursive Program Schemes with Effects



What We Would Like to Prove. . .

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ′ we obtain

a functor H = H · + Id on [Set,Set];

a monad M = (M · , ηM , µM ) on [Set,Set];

a distributive law Λ = [M inl,M inr] · (λ + ηM) : HM→MH;

equivalently, a lifting H̄ of H to [Set,Set]M;

the canonical functor J : [Set,Set]→ [Set,Set]M;

a monad HF H+V with distributive law over M.

D. Schwencke: Recursive Program Schemes with Effects



What We Would Like to Prove. . .

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ′ we obtain

a functor H = H · + Id on [Set,Set];

a monad M = (M · , ηM , µM ) on [Set,Set];

a distributive law Λ = [M inl,M inr] · (λ + ηM) : HM→MH;

equivalently, a lifting H̄ of H to [Set,Set]M;

the canonical functor J : [Set,Set]→ [Set,Set]M;

a monad HF H+V with distributive law over M.

D. Schwencke: Recursive Program Schemes with Effects



What We Would Like to Prove. . .

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ′ we obtain

a functor H = H · + Id on [Set,Set];

a monad M = (M · , ηM , µM ) on [Set,Set];

a distributive law Λ = [M inl,M inr] · (λ + ηM) : HM→MH;

equivalently, a lifting H̄ of H to [Set,Set]M;

the canonical functor J : [Set,Set]→ [Set,Set]M;

a monad HF H+V with distributive law over M.

D. Schwencke: Recursive Program Schemes with Effects



What We Would Like to Prove. . .

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ′ we obtain

a functor H = H · + Id on [Set,Set];

a monad M = (M · , ηM , µM ) on [Set,Set];

a distributive law Λ = [M inl,M inr] · (λ + ηM) : HM→MH;

equivalently, a lifting H̄ of H to [Set,Set]M;

the canonical functor J : [Set,Set]→ [Set,Set]M;

a monad HF H+V with distributive law over M.

D. Schwencke: Recursive Program Schemes with Effects



What We Would Like to Prove. . .

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ′ we obtain

a functor H = H · + Id on [Set,Set];

a monad M = (M · , ηM , µM ) on [Set,Set];

a distributive law Λ = [M inl,M inr] · (λ + ηM) : HM→MH;

equivalently, a lifting H̄ of H to [Set,Set]M;

the canonical functor J : [Set,Set]→ [Set,Set]M;

a monad HF H+V with distributive law over M.

D. Schwencke: Recursive Program Schemes with Effects



What We Would Like to Prove. . .

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ′ we obtain

a functor H = H · + Id on [Set,Set];

a monad M = (M · , ηM , µM ) on [Set,Set];

a distributive law Λ = [M inl,M inr] · (λ + ηM) : HM→MH;

equivalently, a lifting H̄ of H to [Set,Set]M;

the canonical functor J : [Set,Set]→ [Set,Set]M;

a monad HF H+V with distributive law over M.

D. Schwencke: Recursive Program Schemes with Effects



Second Order Substitution with Effects

Definition

For a guarded M-RPS e let
ē be the unique monad mor-
phism such that the diagram
commutes:

H + V

κH+V

��

[J inl·HηH+V ,e0]// M(HF H+V + Id)

F H+V

ē

55kkkkkkkkkkkkkkk

Remarks

ē performs second order substitution with effect handling

ē is an H̄-coalgebra

D. Schwencke: Recursive Program Schemes with Effects



Second Order Substitution with Effects

Definition

For a guarded M-RPS e let
ē be the unique monad mor-
phism such that the diagram
commutes:

H + V

κH+V

��

[J inl·HηH+V ,e0]// M(HF H+V + Id)

F H+V

ē

55kkkkkkkkkkkkkkk

Remarks

ē performs second order substitution with effect handling

ē is an H̄-coalgebra

D. Schwencke: Recursive Program Schemes with Effects



Sufficient Conditions for a Solution

Notation:

φH = µH · κHF H : HF H → F H

Two facts:

[φH , ηH ] : HF H → F H is initial H-algebra.

If

1 J[φH , ηH ]−1 : F H → H̄F H is final H̄-coalgebra and
2 the unique H̄-coalgebra homomorphism h : F H+V → MF H

between ē and J[φH , ηH ]−1 is a monad morphism

then h · κH+V · inr : V → MF H is a solution of e.

D. Schwencke: Recursive Program Schemes with Effects



Sufficient Conditions for a Solution

Notation:

φH = µH · κHF H : HF H → F H

Two facts:

[φH , ηH ] : HF H → F H is initial H-algebra.

If

1 J[φH , ηH ]−1 : F H → H̄F H is final H̄-coalgebra and
2 the unique H̄-coalgebra homomorphism h : F H+V → MF H

between ē and J[φH , ηH ]−1 is a monad morphism

then h · κH+V · inr : V → MF H is a solution of e.

D. Schwencke: Recursive Program Schemes with Effects



Sufficient Conditions for a Solution

Notation:

φH = µH · κHF H : HF H → F H

Two facts:

[φH , ηH ] : HF H → F H is initial H-algebra.

If

1 J[φH , ηH ]−1 : F H → H̄F H is final H̄-coalgebra and
2 the unique H̄-coalgebra homomorphism h : F H+V → MF H

between ē and J[φH , ηH ]−1 is a monad morphism

then h · κH+V · inr : V → MF H is a solution of e.

D. Schwencke: Recursive Program Schemes with Effects



A Result for CPO-enriched SetM

Assumptions

SetM CPO-enriched with strict composition

λ strict

H̄ locally continuous

Theorem

Under the above assumptions, every guarded M-RPS has a
solution.

D. Schwencke: Recursive Program Schemes with Effects



A Result for CPO-enriched SetM

Assumptions

SetM CPO-enriched with strict composition

λ strict

H̄ locally continuous

Theorem

Under the above assumptions, every guarded M-RPS has a
solution.

D. Schwencke: Recursive Program Schemes with Effects



A Result for CPO-enriched SetM (ctd.)

Theorem

Under the above assumptions, every guarded M-RPS has a
solution.

Proof.

1 J[φH , ηH ]−1 final H̄-coalgebra: use techniques of
[Hasuo Jacobs Sokolova 07]

2 h monad morphism: unit easy, multiplication very technical

Examples ([Milius Palm S 09])

Monads + 1, P or D with analytic H and canonical λ

D. Schwencke: Recursive Program Schemes with Effects



A Result for CPO-enriched SetM (ctd.)

Theorem

Under the above assumptions, every guarded M-RPS has a
solution.

Proof.

1 J[φH , ηH ]−1 final H̄-coalgebra: use techniques of
[Hasuo Jacobs Sokolova 07]

2 h monad morphism: unit easy, multiplication very technical

Examples ([Milius Palm S 09])

Monads + 1, P or D with analytic H and canonical λ

D. Schwencke: Recursive Program Schemes with Effects



A Result for CPO-enriched SetM (ctd.)

Theorem

Under the above assumptions, every guarded M-RPS has a
solution.

Proof.

1 J[φH , ηH ]−1 final H̄-coalgebra: use techniques of
[Hasuo Jacobs Sokolova 07]

2 h monad morphism: unit easy, multiplication very technical

Examples ([Milius Palm S 09])

Monads + 1, P or D with analytic H and canonical λ

D. Schwencke: Recursive Program Schemes with Effects



Future Work

1 uniqueness of solutions

2 generalise M-RPS-definition to allow CIMs

[Arnold Nivat 77]-setting category-theoretic
environment monad (−)E

3 interpreted solutions using [Milius Palm S 09]

D. Schwencke: Recursive Program Schemes with Effects



Future Work

1 uniqueness of solutions

2 generalise M-RPS-definition to allow CIMs

[Arnold Nivat 77]-setting category-theoretic
environment monad (−)E

3 interpreted solutions using [Milius Palm S 09]

D. Schwencke: Recursive Program Schemes with Effects



Future Work

1 uniqueness of solutions

2 generalise M-RPS-definition to allow CIMs

[Arnold Nivat 77]-setting category-theoretic
environment monad (−)E

3 interpreted solutions using [Milius Palm S 09]

D. Schwencke: Recursive Program Schemes with Effects



Literature

I A. Arnold and M. Nivat.
Non Deterministic Recursive Program Schemes.
In Fundamentals of Computation Theory – Proc. Int. Conf. Poznań-Kórnik,
Lecture Notes in Comput. Sci. 56 (1977), pp. 12–21.

I N. Ghani, C. Lüth and F. de Marchi.
Solving Algebraic Equations using Coalgebra.
Vol. 37 of Theor. Inform. Appl. (2003), pp. 301–314.

I I. Hasuo, B. Jacobs and A. Sokolova.
Generic Trace Semantics via Coinduction.
Vol. 3 of Log. Methods Comput. Sci. (2007), pp. 1–36.

I S. Milius and L. S. Moss.
The Category Theoretic Solution of Recursive Program Schemes.
Vol. 366 of Theoret. Comput. Sci. (2006), pp. 3–59.

I S. Milius, T. Palm and D. Schwencke.
Complete Iterativity for Algebras with Effects.
In: A. Kurz, M. Lenisa, A. Tarlecki (eds.), Proc. CALCO Udine, Lecture Notes in
Comput. Sci. 5728 (2009), pp. 34–48.

D. Schwencke: Recursive Program Schemes with Effects



Thank you. . .

. . . for your attention!

schwencke@iti.cs.tu-bs.de

D. Schwencke: Recursive Program Schemes with Effects


	Titlepage
	Introduction
	Preliminaries and Definitions
	A Solution Theorem
	Future Work
	Thanks

