

Recursive Program Schemes with Effects

Daniel Schwencke, 28th March 2010

Outline

- 1 Introduction
- 2 Preliminaries and Definitions
- 3 A Solution Theorem
- 4 Future Work

RPSs

Idea: define new operations using given operations and recursion

Definition (RPS without effects, classical)

- disjoint finite sets F given operation symbols
 - Φ new operation symbols
 - X variables
- ullet $\phi(x_1,\ldots,x_n)pprox t^\phi(x_1,\ldots,x_n)$ for all $\phi\in\Phi_n$, t^ϕ term in $F\cup\Phi$

RPSs

Idea: define new operations using given operations and recursion

Definition (RPS without effects, classical)

- disjoint finite sets *F* − given operation symbols
 - Φ new operation symbols
 - X variables
- ullet $\phi(x_1,\ldots,x_n)pprox t^\phi(x_1,\ldots,x_n)$ for all $\phi\in\Phi_n$, t^ϕ term in $F\cup\Phi$

Example ([Milius Moss 06])

$$\phi(x) \approx f(x, \phi(gx))$$

$$\psi(x) \approx f(\phi(gx), ggx)$$

RPSs

Idea: define new operations using given operations and recursion

Definition (RPS without effects, classical)

- disjoint finite sets F given operation symbols
 - Φ new operation symbols
 - X variables
- ullet $\phi(x_1,\ldots,x_n)pprox t^\phi(x_1,\ldots,x_n)$ for all $\phi\in\Phi_n$, t^ϕ term in $F\cup\Phi$

Example ([Milius Moss 06])

$$\phi(x) \approx f(x, \phi(gx))$$

 $\psi(x) \approx f(\phi(gx), ggx)$

Generalising category-theoretic approach in [Ghani Lüth de Marchi 03, Milius Moss 06]

D. Schwencke: Recursive Program Schemes with Effects

ND-RPSs

Idea: add non-deterministic choice on rhs of formal equations

- special binary operation symbol $or \notin F \cup \Phi$
- terms t^{ϕ} in $F \cup \Phi \cup \{or\}$
- see [Arnold Nivat 77]

ND-RPSs

Idea: add non-deterministic choice on rhs of formal equations

- special binary operation symbol $or \notin F \cup \Phi$
- terms t^{ϕ} in $F \cup \Phi \cup \{or\}$
- see [Arnold Nivat 77]

Example

$$pow(x) \approx x \text{ or } (x \cdot pow(x))$$

ND-RPSs

Idea: add non-deterministic choice on rhs of formal equations

- special binary operation symbol $or \notin F \cup \Phi$
- terms t^{ϕ} in $F \cup \Phi \cup \{or\}$
- see [Arnold Nivat 77]

Example

$$pow(x) \approx x \text{ or } (x \cdot pow(x))$$

More generally: RPSs with effects

- partiality
- non-determinism
- probabilism

A Starting Point

Assumptions

- (M, η^M, μ^M) monad on **Set**
- H, V finitary **Set**-functors
- distributive laws $\lambda: HM \rightarrow MH$ and $\nu: VM \rightarrow MV$
- \Rightarrow induced distributive law $\rho: (H+V)M \to M(H+V)$

A Starting Point

Assumptions

- (M, η^M, μ^M) monad on **Set**
- H, V finitary **Set**-functors
- distributive laws $\lambda: HM \rightarrow MH$ and $\nu: VM \rightarrow MV$
- \Rightarrow induced distributive law $\rho: (H+V)M \to M(H+V)$

Meaning:

- M effect, e.g. $_{-}$ + 1, \mathcal{P} , \mathcal{D}
- \blacksquare H, V "signatures" of given/new operations
- λ , ν , ρ extension of operations to parameters with effects

A First Lemma

Notation:

- (F^G, η^G, μ^G) free monad on G
- lacktriangle universal natural transformation $\kappa^{\it G}:{\it G}
 ightarrow {\it F}^{\it G}$
- T monad, $\sigma: G \to T$. Then $\sigma^\#: F^G \to T$ unique monad morphism such that $\sigma^\# \cdot \kappa^G = \sigma$

A First Lemma

Notation:

- (F^G, η^G, μ^G) free monad on G
- lacktriangle universal natural transformation $\kappa^{\it G}:{\it G}
 ightarrow {\it F}^{\it G}$
- T monad, $\sigma: G \to T$. Then $\sigma^\#: F^G \to T$ unique monad morphism such that $\sigma^\# \cdot \kappa^G = \sigma$

Lemma

If G has free algebras, every distributive law $\delta: GM \to MG$ induces a distributive law $\delta': F^GM \to MF^G$.

 \Rightarrow composite monad $(MF^G, \eta^M F^G \cdot \eta^G, (\mu^M * \mu^G) \cdot M\delta' F^G)$

RPSs with Effects

Definition

- M-RPS $e: V \rightarrow MF^{H+V}$
- guarded if $e \equiv V \xrightarrow{e_0} M(HF^{H+V} + Id) \xrightarrow{\cdots} MF^{H+V}$
- (uninterpreted) solution of e $e^{\dagger}: V \rightarrow MF^H$ such that $e^{\dagger} = \mu^M F^H \cdot M [\eta^M F^H \cdot \eta^H, e^{\dagger}]^{\#} \cdot e$

RPSs with Effects

Definition

- M-RPS $e: V \to MF^{H+V}$
- guarded if $e \equiv V \xrightarrow{e_0} M(HF^{H+V} + Id) \xrightarrow{\cdots} MF^{H+V}$
- (uninterpreted) solution of e $e^{\dagger}: V \to MF^H$ such that $e^{\dagger} = \mu^M F^H \cdot M[\eta^M F^H \cdot \eta^H, e^{\dagger}]^\# \cdot e$

Example

For $pow(x) \approx x$ or $(x \cdot pow(x))$ take $M = \mathcal{P}$, $V = \mathrm{Id}$, $H = \mathrm{Id}^2$

- $e_X(x) = \{x, x \cdot pow(x)\}$
- guarded since $x \in \mathrm{Id}(X)$ and $x \cdot pow(x) \in HF^{H+V}X$
- $e_X^{\dagger}(x) = \{x, x \cdot x, x \cdot (x \cdot x), x \cdot (x \cdot (x \cdot x)), \dots\}$ is a solution

Question

Does every guarded M-RPS have a (unique) solution?

Question

Does every guarded M-RPS have a (unique) solution?

From H, M, λ and ρ' we obtain

■ a functor $\mathcal{H} = H \cdot _ + \mathrm{Id}$ on [Set, Set];

Question

Does every guarded M-RPS have a (unique) solution?

- a functor $\mathcal{H} = H \cdot _ + \mathrm{Id}$ on [Set, Set];
- \blacksquare a monad $\mathcal{M} = (M \cdot _, \eta^M_-, \mu^M_-)$ on [Set, Set];

Question

Does every guarded M-RPS have a (unique) solution?

- a functor $\mathcal{H} = H \cdot _ + \mathrm{Id}$ on [Set, Set];
- lacksquare a monad $\mathcal{M} = (M \cdot _, \eta^M_, \mu^M_)$ on [Set, Set];
- a distributive law $\Lambda = [Minl, Minr] \cdot (\lambda_- + \eta^M) : \mathcal{HM} \to \mathcal{MH};$

Question

Does every guarded M-RPS have a (unique) solution?

- a functor $\mathcal{H} = H \cdot _ + \mathrm{Id}$ on [Set, Set];
- lacksquare a monad $\mathcal{M} = (M \cdot _, \eta^M_, \mu^M_)$ on [Set, Set];
- a distributive law $\Lambda = [Minl, Minr] \cdot (\lambda_- + \eta^M) : \mathcal{HM} \to \mathcal{MH};$
- equivalently, a lifting $\bar{\mathcal{H}}$ of \mathcal{H} to $[\mathbf{Set}, \mathbf{Set}]_{\mathcal{M}}$;

Question

Does every guarded M-RPS have a (unique) solution?

- a functor $\mathcal{H} = H \cdot _ + \mathrm{Id}$ on [Set, Set];
- lacksquare a monad $\mathcal{M} = (M \cdot _, \eta^M_, \mu^M_)$ on [Set, Set];
- a distributive law $\Lambda = [Minl, Minr] \cdot (\lambda_- + \eta^M) : \mathcal{HM} \to \mathcal{MH};$
- lacktriangledown equivalently, a lifting $\bar{\mathcal{H}}$ of \mathcal{H} to $[\mathbf{Set}, \mathbf{Set}]_{\mathcal{M}}$;
- the canonical functor $J : [\mathbf{Set}, \mathbf{Set}] \to [\mathbf{Set}, \mathbf{Set}]_{\mathcal{M}};$

Question

Does every guarded M-RPS have a (unique) solution?

- a functor $\mathcal{H} = H \cdot _ + \mathrm{Id}$ on [Set, Set];
- lacksquare a monad $\mathcal{M} = (M \cdot _, \eta^M_, \mu^M_)$ on [Set, Set];
- a distributive law $\Lambda = [Minl, Minr] \cdot (\lambda_- + \eta^M) : \mathcal{HM} \to \mathcal{MH};$
- equivalently, a lifting $\bar{\mathcal{H}}$ of \mathcal{H} to $[\mathbf{Set}, \mathbf{Set}]_{\mathcal{M}}$;
- the canonical functor $J : [\mathbf{Set}, \mathbf{Set}] \to [\mathbf{Set}, \mathbf{Set}]_{\mathcal{M}};$
- **a** monad $\mathcal{H}F^{H+V}$ with distributive law over M.

Second Order Substitution with Effects

Definition

For a guarded M-RPS e let \bar{e} be the unique monad morphism such that the diagram commutes:

$$H + V \xrightarrow{[J \text{inl} \cdot H\eta^{H+V}, e_0]} M(HF^{H+V} + \text{Id})$$

$$\downarrow^{\kappa^{H+V}} \bar{e}$$

$$F^{H+V}$$

Second Order Substitution with Effects

Definition

For a guarded M-RPS e let \bar{e} be the unique monad morphism such that the diagram commutes:

$$H + V \xrightarrow{[J\text{inl}\cdot H\eta^{H+V}, e_0]} M(HF^{H+V} + \text{Id})$$

$$\downarrow_{\kappa^{H+V}} \qquad \bar{e}$$

$$F^{H+V}$$

Remarks

- ē performs second order substitution with effect handling
- ē is an Ĥ-coalgebra

Sufficient Conditions for a Solution

Notation:

Sufficient Conditions for a Solution

Notation:

$$\bullet$$
 $\phi^H = \mu^H \cdot \kappa^H F^H : HF^H \to F^H$

Two facts:

ullet $[\phi^H, \eta^H]: \mathcal{H}F^H \to F^H$ is initial \mathcal{H} -algebra.

Sufficient Conditions for a Solution

Notation:

 $\Phi^H = \mu^H \cdot \kappa^H F^H : HF^H \to F^H$

Two facts:

- $lackbox{ } [\phi^H,\eta^H]:\mathcal{H}F^H o F^H ext{ is initial }\mathcal{H} ext{-algebra}.$
- If
 - 1 $J[\phi^H, \eta^H]^{-1}$: $F^H \to \bar{\mathcal{H}} F^H$ is final $\bar{\mathcal{H}}$ -coalgebra and
 - 2 the unique $\bar{\mathcal{H}}$ -coalgebra homomorphism $h: F^{H+V} \to MF^H$ between $\bar{\mathbf{e}}$ and $J[\phi^H, \eta^H]^{-1}$ is a monad morphism

then $h \cdot \kappa^{H+V} \cdot \text{inr} : V \to MF^H$ is a solution of e.

A Result for CPO-enriched **Set**_M

Assumptions

- Set_M CPO-enriched with strict composition
- λ strict
- H locally continuous

A Result for CPO-enriched **Set**_M

Assumptions

- Set_M CPO-enriched with strict composition
- λ strict
- H locally continuous

Theorem

Under the above assumptions, every guarded M-RPS has a solution.

A Result for CPO-enriched \mathbf{Set}_M (ctd.)

Theorem

Under the above assumptions, every guarded M-RPS has a solution.

Proof.

I $J[\phi^H, \eta^H]^{-1}$ final $\bar{\mathcal{H}}$ -coalgebra: use techniques of [Hasuo Jacobs Sokolova 07]

A Result for CPO-enriched \mathbf{Set}_M (ctd.)

Theorem

Under the above assumptions, every guarded M-RPS has a solution.

Proof.

- I $J[\phi^H, \eta^H]^{-1}$ final $\bar{\mathcal{H}}$ -coalgebra: use techniques of [Hasuo Jacobs Sokolova 07]
- 2 h monad morphism: unit easy, multiplication very technical

A Result for CPO-enriched \mathbf{Set}_M (ctd.)

Theorem

Under the above assumptions, every guarded M-RPS has a solution.

Proof.

- I $J[\phi^H, \eta^H]^{-1}$ final $\bar{\mathcal{H}}$ -coalgebra: use techniques of [Hasuo Jacobs Sokolova 07]
- 2 h monad morphism: unit easy, multiplication very technical

Examples ([Milius Palm S 09])

Monads $_{-}+1$, ${\cal P}$ or ${\cal D}$ with analytic ${\cal H}$ and canonical λ

Future Work

uniqueness of solutions

Future Work

uniqueness of solutions

- 2 generalise M-RPS-definition to allow CIMs
 - [Arnold Nivat 77]-setting category-theoretic
 - environment monad $(-)^E$

Future Work

1 uniqueness of solutions

- 2 generalise M-RPS-definition to allow CIMs
 - [Arnold Nivat 77]-setting category-theoretic
 - \blacksquare environment monad $(-)^E$

interpreted solutions using [Milius Palm S 09]

Literature

- A. Arnold and M. Nivat.
 Non Deterministic Recursive Program Schemes.
 In Fundamentals of Computation Theory Proc. Int. Conf. Poznań-Kórnik, Lecture Notes in Comput. Sci. 56 (1977), pp. 12–21.
- N. Ghani, C. Lüth and F. de Marchi.
 Solving Algebraic Equations using Coalgebra.
 Vol. 37 of Theor. Inform. Appl. (2003), pp. 301–314.
- I. Hasuo, B. Jacobs and A. Sokolova.
 Generic Trace Semantics via Coinduction.
 Vol. 3 of Log. Methods Comput. Sci. (2007), pp. 1–36.
- S. Milius and L. S. Moss.
 The Category Theoretic Solution of Recursive Program Schemes.
 Vol. 366 of Theoret. Comput. Sci. (2006), pp. 3–59.
- S. Milius, T. Palm and D. Schwencke.
 Complete Iterativity for Algebras with Effects.
 In: A. Kurz, M. Lenisa, A. Tarlecki (eds.), Proc. CALCO Udine, Lecture Notes in Comput. Sci. 5728 (2009), pp. 34–48.

Thank you...

... for your attention!

schwencke@iti.cs.tu-bs.de

