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Streams: infinite sequence over a domain D, SD .

nat = 0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: · · · : SN

fib = 0 :: 1 :: 1 :: 2 :: 3 :: 5 :: 8 :: · · · : SN
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Streams: infinite sequence over a domain D, SD .

nat = 0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: · · · : SN

fib = 0 :: 1 :: 1 :: 2 :: 3 :: 5 :: 8 :: · · · : SN

Notation:

head : hnat = 0
tail : tnat = 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: · · ·
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Streams: infinite sequence over a domain D, SD .

nat = 0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: · · · : SN

fib = 0 :: 1 :: 1 :: 2 :: 3 :: 5 :: 8 :: · · · : SN

Notation:

head : hnat = 0 h3nat = 3 h3fib = 2
tail : tnat = 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: · · ·
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Streams: infinite sequence over a domain D, SD .

nat = 0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: · · · : SN

fib = 0 :: 1 :: 1 :: 2 :: 3 :: 5 :: 8 :: · · · : SN

Notation:

head : hnat = 0 h3nat = 3 h3fib = 2
tail : tnat = 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: · · ·

4tnat = 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: 10 :: · · ·
4tfib = 3 :: 5 :: 8 :: 13 :: 21 :: 34 :: 55 :: · · ·
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Streams: infinite sequence over a domain D, SD .

nat = 0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: · · · : SN

fib = 0 :: 1 :: 1 :: 2 :: 3 :: 5 :: 8 :: · · · : SN

Notation:

head : hnat = 0 h3nat = 3 h3fib = 2
tail : tnat = 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: · · ·

4tnat = 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: 10 :: · · ·
4tfib = 3 :: 5 :: 8 :: 13 :: 21 :: 34 :: 55 :: · · ·

Corecursive equations on streams: [Rutten 2007]

nat = 0 :: nat + 1 fib = 0 :: fib + (1 :: fib)
(x :: s1) ⋉ s2 = x :: s2 ⋉ s1
even (x :: s) = x :: odd s odd (x :: s) = even s
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Harder corecursive equations

Equations that are more difficult to solve [Zantema 2009]

Three functions of type S → S:

φ s = hs :: φ(even ts) ⋉ φ(odd ts)
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Harder corecursive equations

Equations that are more difficult to solve [Zantema 2009]

Three functions of type S → S:

φ s = hs :: φ(even ts) ⋉ φ(odd ts)

χ s = hs :: ts ⋉
t(χ ts)
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Harder corecursive equations

Equations that are more difficult to solve [Zantema 2009]

Three functions of type S → S:

φ s = hs :: φ(even ts) ⋉ φ(odd ts)

χ s = hs :: ts ⋉
t(χ ts)

ψ s = hs :: even(ψ(odd ts)) ⋉ odd(ψ(even ts))
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Harder corecursive equations

Equations that are more difficult to solve [Zantema 2009]

Three functions of type S → S:

φ s = hs :: φ(even ts) ⋉ φ(odd ts)

χ s = hs :: ts ⋉
t(χ ts)

ψ s = hs :: even(ψ(odd ts)) ⋉ odd(ψ(even ts))

Puzzle: Find equation f s = C [s, f ] that generates:

f nat = 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8
::4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15
::0 :: 16 :: 8 :: 17 :: 4 :: 18 :: 9 :: 19 :: 2 :: 20 :: 10 :: 21 :: 5 :: 22
::11 :: 23 :: 1 :: 24 :: 12 :: 25 :: 6 :: 26 :: 13 :: 27 :: 3 :: 28 :: 14
::29 :: 7 :: 30 :: 15 :: 31 :: 0 :: 32 :: 16 :: 33 :: 8 :: 34 :: 17 :: 35
::4 :: 36 :: 18 :: 37 :: 9 :: 38 :: · · ·
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Images of recursive streams

Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

Images of streams of Booleans [Zantema]

The Boolean Fibonacci stream:

f (0 :: s) = 0 :: 1 :: f s bfib = f bfib
f (1 :: s) = 0 :: f s
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Images of recursive streams

Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

Images of streams of Booleans [Zantema]

The Boolean Fibonacci stream:

f (0 :: s) = 0 :: 1 :: f s bfib = f bfib
f (1 :: s) = 0 :: f s

bfib = 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0
::1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1
::0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0
::1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1
::0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1
::0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0
::1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1
::0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0
::0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0
::1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1
::0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0
::0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0
::1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1
::0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0
::0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0
::1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1
::0 :: 0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 0
::0 :: 1 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: · · ·
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Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

CoInductive Types: [Hagino 1987, Aczel & Mendler 1989]

Type-theoretic implementation of final coalgebras.
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Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

CoInductive Types: [Hagino 1987, Aczel & Mendler 1989]

Type-theoretic implementation of final coalgebras.

Final Coalgebra:
codata SD : Set 〈h−, t−〉 : SD → D × SD

(::) : D → SD → SD
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Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

CoInductive Types: [Hagino 1987, Aczel & Mendler 1989]

Type-theoretic implementation of final coalgebras.

Final Coalgebra:
codata SD : Set 〈h−, t−〉 : SD → D × SD

(::) : D → SD → SD

codata TA,B : Set leaf b 7→ inl b
leaf : B → TA,B node f 7→ inr f

node : (A → TA,B) → TA,B : TA,B → B + (A → TA,B)
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Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

CoInductive Types: [Hagino 1987, Aczel & Mendler 1989]

Type-theoretic implementation of final coalgebras.

Final Coalgebra:
codata SD : Set 〈h−, t−〉 : SD → D × SD

(::) : D → SD → SD

codata TA,B : Set leaf b 7→ inl b
leaf : B → TA,B node f 7→ inr f

node : (A → TA,B) → TA,B : TA,B → B + (A → TA,B)

(::), leaf and node are constructors
Guardedness by constructors: [Coquand 1993]

A corecursive equation has a unique solution if all recursive
calls occur only directly under constructor applications.
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Example of guarded definition

Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

Definitions are accepted if they satisfy the guardedness
condition [Gimènez 1998]

fguard : N → S

fguard n = casemod(n, 3)






0 7→ nat
1 7→ n :: (n − 1) :: fguard (n + 1)
2 7→ n :: map (2 · −) (fguard (2 · n))

No recursive calls.
Recursive calls under two constructors.
Map filters the constructors.

Venanzio Capretta Coalgebras in Type Theory



Coalgebras in
Type Theory

Venanzio
Capretta

Corecursive
Equations

CoInductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory

Mixing
Induction and
Coinduction

Methods to solve corecursive equations

Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

Some equations don’t satisfy guardedness
but they still have a unique solution.
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Methods to solve corecursive equations

Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

Some equations don’t satisfy guardedness
but they still have a unique solution.
More powerful methods:
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Methods to solve corecursive equations

Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

Some equations don’t satisfy guardedness
but they still have a unique solution.
More powerful methods:

◮ Metrics (fixpoints of contractions) [Di Giannantonio/Miculan 2002]
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Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

Some equations don’t satisfy guardedness
but they still have a unique solution.
More powerful methods:

◮ Metrics (fixpoints of contractions) [Di Giannantonio/Miculan 2002]

◮ Pebbleflow Networks [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008]
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Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

Some equations don’t satisfy guardedness
but they still have a unique solution.
More powerful methods:

◮ Metrics (fixpoints of contractions) [Di Giannantonio/Miculan 2002]

◮ Pebbleflow Networks [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008]

◮ Circular Coinduction (CIRC) [Roşu/Lucanu 2009]
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Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

Some equations don’t satisfy guardedness
but they still have a unique solution.
More powerful methods:

◮ Metrics (fixpoints of contractions) [Di Giannantonio/Miculan 2002]

◮ Pebbleflow Networks [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008]

◮ Circular Coinduction (CIRC) [Roşu/Lucanu 2009]

◮ Termination of Rewriting Systems [Zantema 2009]
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Methods to solve corecursive equations

Puzzle: 0 :: 0 :: 1 :: 0 :: 2 :: 1 :: 3 :: 0 :: 4 :: 2 :: 5 :: 1 :: 6 :: 3 :: 7 :: 0 :: 8 :: 4 :: 9 :: 2 :: 10 :: 5 :: 11 :: 1 :: 12 :: 6 :: 13 :: 3 :: 14 :: 7 :: 15

Some equations don’t satisfy guardedness
but they still have a unique solution.
More powerful methods:

◮ Metrics (fixpoints of contractions) [Di Giannantonio/Miculan 2002]

◮ Pebbleflow Networks [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008]

◮ Circular Coinduction (CIRC) [Roşu/Lucanu 2009]

◮ Termination of Rewriting Systems [Zantema 2009]

◮ Unicity by Bisimulation [VC 2010]
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Bisimulations and the Coinduction Principle

Definition of bisimulation. [Park 1981, Milner 1989]
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Definition of bisimulation. [Park 1981, Milner 1989]

A relation ∼ on a coinductive type is a bisimulation if

x1 ∼ x2 ⇒







same top constructor
same non-recursive arguments
recursive arguments related by ∼
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Bisimulations and the Coinduction Principle

Definition of bisimulation. [Park 1981, Milner 1989]

A relation ∼ on a coinductive type is a bisimulation if

x1 ∼ x2 ⇒







same top constructor
same non-recursive arguments
recursive arguments related by ∼

On Streams: s1 ∼ s2 ⇒ hs1 = hs2 ∧
ts1 ∼ ts2
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Bisimulations and the Coinduction Principle

Definition of bisimulation. [Park 1981, Milner 1989]

A relation ∼ on a coinductive type is a bisimulation if

x1 ∼ x2 ⇒







same top constructor
same non-recursive arguments
recursive arguments related by ∼

On Streams: s1 ∼ s2 ⇒ hs1 = hs2 ∧
ts1 ∼ ts2

On Trees:

t1 ∼ t2 ⇒







t1 = leaf b = t2 ∨
t1 = node f1 ∧ t2 = node f2

∧ ∀a.f1 a ∼ f2 a
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Bisimulations and the Coinduction Principle

Definition of bisimulation. [Park 1981, Milner 1989]

A relation ∼ on a coinductive type is a bisimulation if

x1 ∼ x2 ⇒







same top constructor
same non-recursive arguments
recursive arguments related by ∼

On Streams: s1 ∼ s2 ⇒ hs1 = hs2 ∧
ts1 ∼ ts2

On Trees:

t1 ∼ t2 ⇒







t1 = leaf b = t2 ∨
t1 = node f1 ∧ t2 = node f2

∧ ∀a.f1 a ∼ f2 a

The Coinduction principle:

x1 ∼ x2 ⇒ x1 = x2.
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Bisimulation as a coinductive relation

The Coinduction principle doesn’t hold in Type Theory:
Equality is intentional: Equality of normal forms
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Bisimulation as a coinductive relation

The Coinduction principle doesn’t hold in Type Theory:
Equality is intentional: Equality of normal forms
Instead: Bisimilarity is defined as a coinductive relation:

codata (≈) : S → S → Prop
conssim : (x : D)(s1, s2 : S)s1 ≈ s2 → (x :: s1) ≈ (x :: x2)
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Bisimulation as a coinductive relation

The Coinduction principle doesn’t hold in Type Theory:
Equality is intentional: Equality of normal forms
Instead: Bisimilarity is defined as a coinductive relation:

codata (≈) : S → S → Prop
conssim : (x : D)(s1, s2 : S)s1 ≈ s2 → (x :: s1) ≈ (x :: x2)

codata (≈) : T → T → Prop
leafsim : (b : B)leaf b ≈ leaf b

nodesim : (f1, f2 : A → T)(∀a.f1 a ≈ f2 a)
→ (node f1) ≈ (node f2)
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t(χ ts)
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Bisimulation and Unicity of Solutions

Unicity of solutions for the equation:

χ : S → S

χ s = hs :: ts ⋉
t(χ ts)

Suppose χ1 and χ2 are solutions.
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Bisimulation and Unicity of Solutions

Unicity of solutions for the equation:

χ : S → S

χ s = hs :: ts ⋉
t(χ ts)

Suppose χ1 and χ2 are solutions.
Ad hoc bisimulation, inductively defined by:
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Bisimulation and Unicity of Solutions

Unicity of solutions for the equation:

χ : S → S

χ s = hs :: ts ⋉
t(χ ts)

Suppose χ1 and χ2 are solutions.
Ad hoc bisimulation, inductively defined by:

s : S

χ1 s ∼ χ2 s
(R0)
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Bisimulation and Unicity of Solutions

Unicity of solutions for the equation:

χ : S → S

χ s = hs :: ts ⋉
t(χ ts)

Suppose χ1 and χ2 are solutions.
Ad hoc bisimulation, inductively defined by:

s : S

χ1 s ∼ χ2 s
(R0)

s, x1, x2 : S x1 ∼ x2

s ⋉ tx1 ∼ s ⋉ tx2
(R1)
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Bisimulation and Unicity of Solutions

Unicity of solutions for the equation:

χ : S → S

χ s = hs :: ts ⋉
t(χ ts)

Suppose χ1 and χ2 are solutions.
Ad hoc bisimulation, inductively defined by:

s : S

χ1 s ∼ χ2 s
(R0)

s, x1, x2 : S x1 ∼ x2

s ⋉ tx1 ∼ s ⋉ tx2
(R1)

s, x1, x2 : S x1 ∼ x2

x1 ⋉ s ∼ x2 ⋉ s
(R2).
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Bisimulation and Unicity of Solutions

Unicity of solutions for the equation:

χ : S → S

χ s = hs :: ts ⋉
t(χ ts)

Suppose χ1 and χ2 are solutions.
Ad hoc bisimulation, inductively defined by:

s : S

χ1 s ∼ χ2 s
(R0)

s, x1, x2 : S x1 ∼ x2

s ⋉ tx1 ∼ s ⋉ tx2
(R1)

s, x1, x2 : S x1 ∼ x2

x1 ⋉ s ∼ x2 ⋉ s
(R2).

By the coinduction principle and R0, χ1 = χ2 .
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Brouwer’s Continuity Principle

Brouwer’s Continuity (In Functional Programming terms):
Given a function f : SN → N,
for every s : SN, there exists n : N such that
for every s ′ : SN, if take n s ′ = take n s, then f s ′ = f s.
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Brouwer’s Continuity Principle

Brouwer’s Continuity (In Functional Programming terms):
Given a function f : SN → N,
for every s : SN, there exists n : N such that
for every s ′ : SN, if take n s ′ = take n s, then f s ′ = f s.
Apparently impossible functional program: [Martin Escardo]

allb : (SB → B) → B
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Brouwer’s Continuity Principle

Brouwer’s Continuity (In Functional Programming terms):
Given a function f : SN → N,
for every s : SN, there exists n : N such that
for every s ′ : SN, if take n s ′ = take n s, then f s ′ = f s.
Apparently impossible functional program: [Martin Escardo]

allb : (SB → B) → B

allb f = f (counterexample f )
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Brouwer’s Continuity Principle

Brouwer’s Continuity (In Functional Programming terms):
Given a function f : SN → N,
for every s : SN, there exists n : N such that
for every s ′ : SN, if take n s ′ = take n s, then f s ′ = f s.
Apparently impossible functional program: [Martin Escardo]

allb : (SB → B) → B

allb f = f (counterexample f )

counterexample : (SB → B) → SB

counterexample f = if (allb ft)
then (false :: counterexample ff )
else (true :: counterexample ft)

where ft = λs.f (true :: s)
ff = λs.f (false :: s)
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Integers in binary representation: [B].
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Tabulation of functions on inductive types

Integers in binary representation: [B].
A function f : [B] → A can be represented by a tree:

codata TA : Set
node : A → TA → TA → TA
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Tabulation of functions on inductive types

Integers in binary representation: [B].
A function f : [B] → A can be represented by a tree:

codata TA : Set
node : A → TA → TA → TA

Tabulation of the function:

tabulate : ([B] → A) → TA

tabulate f = node (f []) (tabulate ft) (tabulate ff )
where ft = λs.f (true :: s)

ff = λs.f (false :: s)
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Tabulation of functions on inductive types

Integers in binary representation: [B].
A function f : [B] → A can be represented by a tree:

codata TA : Set
node : A → TA → TA → TA

Tabulation of the function:

tabulate : ([B] → A) → TA

tabulate f = node (f []) (tabulate ft) (tabulate ff )
where ft = λs.f (true :: s)

ff = λs.f (false :: s)

Application of a tabulation:

apply : TA → [B] → A

apply (node a t1 t2) [] = a

apply (node a t1 t2) (true :: l) = apply t1 l

apply (node a t1 t2) (false :: l) = apply t2 l
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Tabulation of functions on coinductive types

A function f : SA → B can (?) be represented by
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Tabulation of functions on coinductive types

A function f : SA → B can (?) be represented by
a well-founded tree: [Ghani/Hancock/Pattinson:2006]

data TA,B : Set
leaf : B → TA,B

node : (A → TA,B) → TA,B
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Tabulation of functions on coinductive types

A function f : SA → B can (?) be represented by
a well-founded tree: [Ghani/Hancock/Pattinson:2006]

data TA,B : Set
leaf : B → TA,B

node : (A → TA,B) → TA,B

Application of a tabulation:

apply : TA,B → SA → B

apply (leaf b) s = b

apply (node g) (a :: s) = apply (g a) s
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Tabulation of functions on coinductive types

A function f : SA → B can (?) be represented by
a well-founded tree: [Ghani/Hancock/Pattinson:2006]

data TA,B : Set
leaf : B → TA,B

node : (A → TA,B) → TA,B

Application of a tabulation:

apply : TA,B → SA → B

apply (leaf b) s = b

apply (node g) (a :: s) = apply (g a) s

Is there an inverse transformation/tabulation?

tabulate : (SA → B) → TA,B

Surely B must be a discrete/inductive type.
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Tabulation Duality?

What is the relation between the two kinds of tabulations?

◮ Function on Inductive Types : Coinductive Tabulations.

◮ Function on CoInductive Types : Inductive Tabulations.

How to build a tabulation in the second case?
We need strong intentionality.

Venanzio Capretta Coalgebras in Type Theory



Coalgebras in
Type Theory

Venanzio
Capretta

Corecursive
Equations

CoInductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory

Mixing
Induction and
Coinduction

General Recursion

Venanzio Capretta Coalgebras in Type Theory



Coalgebras in
Type Theory

Venanzio
Capretta

Corecursive
Equations

CoInductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory

Mixing
Induction and
Coinduction

Partial Recursion in Type Theory

In Type Theory all functions are total.
How do we represent partial recursive functions?

Venanzio Capretta Coalgebras in Type Theory



Coalgebras in
Type Theory

Venanzio
Capretta

Corecursive
Equations

CoInductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory

Mixing
Induction and
Coinduction

Partial Recursion in Type Theory

In Type Theory all functions are total.
How do we represent partial recursive functions?
Partiality Monad: [VC 2005]

codataBν : Set
⌈−⌉ : B → Bν

⊳ : Bν → Bν
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Partial Recursion in Type Theory

In Type Theory all functions are total.
How do we represent partial recursive functions?
Partiality Monad: [VC 2005]

codataBν : Set
⌈−⌉ : B → Bν

⊳ : Bν → Bν

A partial function is represented as f : A → Bν .
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Partial Recursion in Type Theory

In Type Theory all functions are total.
How do we represent partial recursive functions?
Partiality Monad: [VC 2005]

codataBν : Set
⌈−⌉ : B → Bν

⊳ : Bν → Bν

A partial function is represented as f : A → Bν .
f defined on a: f a = ⊳⊳⊳ · · ·⊳⌈b⌉.
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Partial Recursion in Type Theory

In Type Theory all functions are total.
How do we represent partial recursive functions?
Partiality Monad: [VC 2005]

codataBν : Set
⌈−⌉ : B → Bν

⊳ : Bν → Bν

A partial function is represented as f : A → Bν .
f defined on a: f a = ⊳⊳⊳ · · ·⊳⌈b⌉.
f undefined on a: f a = ⊳⊳⊳⊳ · · · .
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Bove/Capretta method

Different approach to partial recursive functions.[Bove/VC 2001]

Venanzio Capretta Coalgebras in Type Theory



Coalgebras in
Type Theory

Venanzio
Capretta

Corecursive
Equations

CoInductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory

Mixing
Induction and
Coinduction

Bove/Capretta method

Different approach to partial recursive functions.[Bove/VC 2001]

A partial function f : A ⇀ B is represented by
A domain predicate and a function on the domain:

Dom : A → Prop
f : (a : A)Dom a → B
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Bove/Capretta method

Different approach to partial recursive functions.[Bove/VC 2001]

A partial function f : A ⇀ B is represented by
A domain predicate and a function on the domain:

Dom : A → Prop
f : (a : A)Dom a → B

Example, function that seeks a 0 in a stream:

seek : SN ⇀ N
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Bove/Capretta method

Different approach to partial recursive functions.[Bove/VC 2001]

A partial function f : A ⇀ B is represented by
A domain predicate and a function on the domain:

Dom : A → Prop
f : (a : A)Dom a → B

Example, function that seeks a 0 in a stream:

seek : SN ⇀ N

data Domseek : SN → Prop
seek : (s : SN)Domseek s → N
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Bove/Capretta method

Different approach to partial recursive functions.[Bove/VC 2001]

A partial function f : A ⇀ B is represented by
A domain predicate and a function on the domain:

Dom : A → Prop
f : (a : A)Dom a → B

Example, function that seeks a 0 in a stream:

seek : SN ⇀ N

data Domseek : SN → Prop
found : (s : SN)Domseek (0 :: s)
notfound : (n : N)(s : SN)Domseek s → Domseek (S n :: s)

seek : (s : SN)Domseek s → N

seek (0 :: s) (found z) = 0
seek (S n :: s) (notfound n s h) = S (seek s h)
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Computation by Prophecy

Coinductive version of the domain:
trace of computation. [Bove/VC 2007]
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Computation by Prophecy

Coinductive version of the domain:
trace of computation. [Bove/VC 2007]

codata Traceseek : SN → Prop
found : (s : SN)Traceseek (0 :: s)
notfound : (n : N)(s : SN)Traceseek s → Traceseek (S n :: s)

seek : (s : SN)Traceseek s → N
ν
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Computation by Prophecy

Coinductive version of the domain:
trace of computation. [Bove/VC 2007]

codata Traceseek : SN → Prop
found : (s : SN)Traceseek (0 :: s)
notfound : (n : N)(s : SN)Traceseek s → Traceseek (S n :: s)

seek : (s : SN)Traceseek s → N
ν

In all these representations:
How do we effectively compute the function?
Coinductive objects don’t automatically unfold.
Domain predicate must be proved.
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Computation by Judgement Rewriting

To compute seek (7 :: 2 :: 5 :: · · · )
Assume the domain predicate and type-check the result:

h : Domseek (7 :: 2 :: 5 :: · · · ) ⊢ seek (7 :: 2 :: 5 :: · · · ) h : N
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Computation by Judgement Rewriting

To compute seek (7 :: 2 :: 5 :: · · · )
Assume the domain predicate and type-check the result:

h : Domseek (7 :: 2 :: 5 :: · · · ) ⊢ seek (7 :: 2 :: 5 :: · · · ) h : N

Inversion: h must have the form (notfound 6 (2 :: 5 :: · · · ) h1).
Rewrite the judgement:
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Computation by Judgement Rewriting

To compute seek (7 :: 2 :: 5 :: · · · )
Assume the domain predicate and type-check the result:

h : Domseek (7 :: 2 :: 5 :: · · · ) ⊢ seek (7 :: 2 :: 5 :: · · · ) h : N

Inversion: h must have the form (notfound 6 (2 :: 5 :: · · · ) h1).
Rewrite the judgement:

7→ h1 : Domseek (2 :: 5 :: · · · )
⊢ seek (7 :: 2 :: 5 :: · · · ) (notfound 6 (2 :: 5 :: · · · ) h1) : N
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Computation by Judgement Rewriting

To compute seek (7 :: 2 :: 5 :: · · · )
Assume the domain predicate and type-check the result:

h : Domseek (7 :: 2 :: 5 :: · · · ) ⊢ seek (7 :: 2 :: 5 :: · · · ) h : N

Inversion: h must have the form (notfound 6 (2 :: 5 :: · · · ) h1).
Rewrite the judgement:

7→ h1 : Domseek (2 :: 5 :: · · · )
⊢ seek (7 :: 2 :: 5 :: · · · ) (notfound 6 (2 :: 5 :: · · · ) h1) : N

 h1 : Domseek (2 :: 5 :: · · · ) ⊢ S seek (2 :: 5 :: · · · ) h1 : N
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Computation by Judgement Rewriting

To compute seek (7 :: 2 :: 5 :: · · · )
Assume the domain predicate and type-check the result:

h : Domseek (7 :: 2 :: 5 :: · · · ) ⊢ seek (7 :: 2 :: 5 :: · · · ) h : N

Inversion: h must have the form (notfound 6 (2 :: 5 :: · · · ) h1).
Rewrite the judgement:

7→ h1 : Domseek (2 :: 5 :: · · · )
⊢ seek (7 :: 2 :: 5 :: · · · ) (notfound 6 (2 :: 5 :: · · · ) h1) : N

 h1 : Domseek (2 :: 5 :: · · · ) ⊢ S seek (2 :: 5 :: · · · ) h1 : N

7→ h2 : Domseek (5 :: · · · ) ⊢ SS seek (5 :: · · · ) h2 : N
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Computation by Judgement Rewriting

To compute seek (7 :: 2 :: 5 :: · · · )
Assume the domain predicate and type-check the result:

h : Domseek (7 :: 2 :: 5 :: · · · ) ⊢ seek (7 :: 2 :: 5 :: · · · ) h : N

Inversion: h must have the form (notfound 6 (2 :: 5 :: · · · ) h1).
Rewrite the judgement:

7→ h1 : Domseek (2 :: 5 :: · · · )
⊢ seek (7 :: 2 :: 5 :: · · · ) (notfound 6 (2 :: 5 :: · · · ) h1) : N

 h1 : Domseek (2 :: 5 :: · · · ) ⊢ S seek (2 :: 5 :: · · · ) h1 : N

7→ h2 : Domseek (5 :: · · · ) ⊢ SS seek (5 :: · · · ) h2 : N

Connection with Non-Standard Type Theory [Martin-Löf 1988]
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Mixed Inductive/Coinductive Types

Data structures with both: [Danielsson/Altenkirch 2009]

◮ Constructors that must be well-founded;

◮ Constructors that can be iterated infinitely

Example, equality for the partiality monad:

codata (≃) : Bν → Bν → Prop
eqstep : (x1, x2 : Bν)x1 ≃ x2 → ⊳x1 ≃ ⊳x2

eqval : (b : B)⌈b⌉ ≃ ⌈b⌉
eqmix1 : (x1, x2 : Bν)x1 ≃ x2 → ⊳x1 ≃ x2

eqmix2 : (x1, x2 : Bν)x1 ≃ x2 → x1 ≃ ⊳x2
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Mixed Inductive/Coinductive Types

Data structures with both: [Danielsson/Altenkirch 2009]

◮ Constructors that must be well-founded;

◮ Constructors that can be iterated infinitely

Example, equality for the partiality monad:

codata (≃) : Bν → Bν → Prop
eqstep : (x1, x2 : Bν)x1 ≃ x2 → ⊳x1 ≃ ⊳x2

eqval : (x1, x2 : Bν)(b : B)x1 ↓ b → x2 ↓ b → x1 ≃ x2

x ↓ b inductive convergence relation

Venanzio Capretta Coalgebras in Type Theory



Coalgebras in
Type Theory

Venanzio
Capretta

Corecursive
Equations

CoInductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory

Mixing
Induction and
Coinduction

Mixed Inductive/Coinductive Types

Data structures with both: [Danielsson/Altenkirch 2009]

◮ Constructors that must be well-founded;

◮ Constructors that can be iterated infinitely

Example, equality for the partiality monad:

data (≃) : Bν → Bν → Prop

eqstep : (x1, x2 : Bν)x1
∞

≃ x2 → ⊳x1 ≃ ⊳x2

eqval : (b : B)⌈b⌉ ≃ ⌈b⌉
eqmix1 : (x1, x2 : Bν)x1 ≃ x2 → ⊳x1 ≃ x2

eqmix2 : (x1, x2 : Bν)x1 ≃ x2 → x1 ≃ ⊳x2

The ∞ marks arguments that need not be well-founded
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Conclusion

Interesting topics for future research:
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Interesting topics for future research:

◮ Solution of corecursive equations;

◮ Tabulations of functions on coinductive domains;

◮ General recursion and non-standard type theory;
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Interesting topics for future research:

◮ Solution of corecursive equations;

◮ Tabulations of functions on coinductive domains;

◮ General recursion and non-standard type theory;

◮ Mixed inductive/coinductive definitions.
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Conclusion

Interesting topics for future research:

◮ Solution of corecursive equations;

◮ Tabulations of functions on coinductive domains;

◮ General recursion and non-standard type theory;

◮ Mixed inductive/coinductive definitions.

There are many other exiting topics.
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MSFP

Mathematically Structured Functional Programming
Baltimore, 25 September 2010
http://cs.ioc.ee/msfp/msfp2010/
Deadline: 9 - 16 April
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