Coalgebras in Type Theory	
Venanzio Capretta	
Corecursive Equations	Coalgebras in Type Theory
CoInductive Types	
Bisimulations	Venensie Convette
Constructive Infinity	Venanzio Capretta
Tabulations	
General Recursion	CMCS 2010, Paphos, Cyprus
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	《日》《圖》《注》《注》 []
	Venanzio Capretta Coalgebras in Type Theory

Corecursive Equations Coalgebras in Type Theory Venanzio Capretta Corecursive Equations Recursion Non-Standard Mixing Induction and

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト

500

Streams Coalgebras in Type Theory Venanzio Capretta Corecursive Equations Streams: infinite sequence over a domain D, \mathbb{S}_D . CoInductive $nat = 0: 1: 2: 3: 4: 5: 6: \cdots : S_N$ $fib = 0:1:1:2:3:5:8:\cdots:S_N$ Constructive Recursion Non-Standard Mixing 《曰》 《圖》 《臣》 《臣》 DQ CV 3

Venanzio Capretta

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Streams: infinite sequence over a domain D, \mathbb{S}_D .

$nat = 0 : 1 : 2 : 3 : 4 : 5 : 6 : \cdots : \mathbb{S}_{\mathbb{N}}$
$fib = \texttt{0} : \texttt{1} : \texttt{1} : \texttt{2} : \texttt{3} : \texttt{5} : \texttt{8} : \cdots : \mathbb{S}_{\mathbb{N}}$

Notation:

head: ${}^{h}nat = 0$ tail: ${}^{h}nat = 1:2:3:4:5:6:7:\cdots$

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト

 \equiv

DQ CV

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Streams: infinite sequence over a domain D, \mathbb{S}_D .

$$\begin{split} \mathsf{nat} &= 0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: \cdots : \mathbb{S}_{\mathbb{N}} \\ \mathsf{fib} &= 0 :: 1 :: 1 :: 2 :: 3 :: 5 :: 8 :: \cdots : \mathbb{S}_{\mathbb{N}} \end{split}$$

Notation:

head :	${}^{\mathfrak{h}}\!nat=0$	$^{\mathfrak{h}3}nat=3$	$\mathfrak{h}^3 fib = 2$
tail :	${}^{t}\!nat=1$:	2:3:4:5:	6:7:

Venanzio Capretta

Coalgebras in Type Theory

《曰》 《圖》 《臣》 《臣》

DQ CV

3

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

Streams: infinite sequence over a domain D, \mathbb{S}_D .

$nat = 0 : 1 : 2 : 3 : 4 : 5 : 6 : \cdots$	$\cdot: \mathbb{S}_{\mathbb{N}}$
$fib = 0:1:1:2:3:5:8:\cdots$	$: \mathbb{S}_{\mathbb{N}}$

Notation:

head tail :

$$\begin{array}{rll} \begin{array}{lll} & & {}^{\mathfrak{h}}\mathsf{hat}=0 & {}^{\mathfrak{h}3}\mathsf{nat}=3 & {}^{\mathfrak{h}3}\mathsf{fib}=2 \\ & & {}^{\mathfrak{h}}\mathsf{nat}=1:2:3:4:5:6:7:\cdots \\ & {}^{4\mathfrak{t}}\mathsf{nat}=4:5:6:7:8:9:10:\cdots \\ & {}^{4\mathfrak{t}}\mathsf{fib}=3:5:8:13:21:34:55:\cdots \end{array}$$

Venanzio Capretta

Coalgebras in Type Theory

・ロト ・ 同 ト ・ 臣 ト ・ 臣 ト

3

DQ CV

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Streams: infinite sequence over a domain D, \mathbb{S}_D .

$$\begin{split} \mathsf{nat} &= 0:1:2:3:4:5:6:\cdots:\mathbb{S}_{\mathbb{N}} \\ \mathsf{fib} &= 0:1:1:2:3:5:8:\cdots:\mathbb{S}_{\mathbb{N}} \end{split}$$

Notation:

head :	${}^{\mathfrak{h}}\!nat=0$ ${}^{\mathfrak{h}3}nat=3$ ${}^{\mathfrak{h}3}fib=2$
tail :	$hat = 1 : 2 : 3 : 4 : 5 : 6 : 7 : \cdots$
	4t nat = 4 : 5 : 6 : 7 : 8 : 9 : 10 : · · ·
	4t fib = 3 : 5 : 8 : 13 : 21 : 34 : 55 : · · ·

Corecursive equations on streams: [Rutten 2007]

 $nat = 0 : nat + 1 \qquad fib = 0 : fib + (1 : fib)$ (x : s₁) \kappa s₂ = x : s₂ \kappa s1 even (x : s) = x : odd s \qquad odd (x : s) = even s

Venanzio Capretta

Coalgebras in Type Theory

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Equations that are more difficult to solve [Zantema 2009] Three functions of type $\mathbb{S} \to \mathbb{S}$:

 $\phi \ s = {}^{\mathfrak{h}}\!s : \phi(\text{even }{}^{\mathfrak{t}}\!s) \ltimes \phi(\text{odd }{}^{\mathfrak{t}}\!s)$

nac

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Equations that are more difficult to solve [Zantema 2009] Three functions of type $\mathbb{S} \to \mathbb{S}$:

 $\phi \ s = {}^{\mathfrak{h}}s : \phi(\text{even }{}^{\mathfrak{t}}s) \ltimes \phi(\text{odd }{}^{\mathfrak{t}}s)$ $\chi \ s = {}^{\mathfrak{h}}s : {}^{\mathfrak{t}}s \ltimes {}^{\mathfrak{t}}(\chi {}^{\mathfrak{t}}s)$

Venanzio Capretta

Coalgebras in Type Theory

DQ P

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

Non-Standard Type Theory

Mixing

Equations that are more difficult to solve [Zantema 2009] Three functions of type $\mathbb{S} \to \mathbb{S}$:

> $\phi s = {}^{\mathfrak{h}}s : \phi(\text{even }{}^{\mathfrak{t}}s) \ltimes \phi(\text{odd }{}^{\mathfrak{t}}s)$ $\chi s = {}^{\mathfrak{h}}s : {}^{\mathfrak{s}} \ltimes {}^{\mathfrak{t}}(\chi {}^{\mathfrak{t}}s)$

 $\psi s = {}^{\mathfrak{h}}s := \operatorname{even}(\psi(\operatorname{odd} {}^{\mathfrak{t}}s)) \ltimes \operatorname{odd}(\psi(\operatorname{even} {}^{\mathfrak{t}}s))$

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Equations that are more difficult to solve [Zantema 2009] Three functions of type $\mathbb{S} \to \mathbb{S}$:

 $\phi \ s = {}^{\mathfrak{h}}s :: \phi(\operatorname{even} {}^{\mathfrak{t}}s) \ltimes \phi(\operatorname{odd} {}^{\mathfrak{t}}s)$ $\chi \ s = {}^{\mathfrak{h}}s :: {}^{\mathfrak{t}}s \ltimes {}^{\mathfrak{t}}(\chi {}^{\mathfrak{t}}s)$ $\psi \ s = {}^{\mathfrak{h}}s :: \operatorname{even}(\psi(\operatorname{odd} {}^{\mathfrak{t}}s)) \ltimes \operatorname{odd}(\psi(\operatorname{even} {}^{\mathfrak{t}}s))$

Puzzle: Find equation f s = C[s, f] that generates:

f nat = 0: 0: 1: 0: 2: 1: 3: 0: 4: 2: 5: 1: 6: 3: 7: 0: 8 :4: 9: 2: 10: 5: 11: 1: 12: 6: 13: 3: 14: 7: 15 :0: 16: 8: 17: 4: 18: 9: 19: 2: 20: 10: 21: 5: 22 :11: 23: 1: 24: 12: 25: 6: 26: 13: 27: 3: 28: 14 :29: 7: 30: 15: 31: 0: 32: 16: 33: 8: 34: 17: 35 $:4: 36: 18: 37: 9: 38: \cdots$

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト 二日

	Images of recursive streams
	Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15
Coalgebras in Type Theory Venanzio Capretta Corecursive Equations	Images of streams of Booleans [Zantema] The Boolean Fibonacci stream: f(0:s) = 0:1:fs bfib $= f$ bfib f(1:s) = 0:fs
Colnductive Types	
Bisimulations	
Constructive Infinity	
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	(日) (母) (王) (王) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日

Images of recursive streams

Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

Colnductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

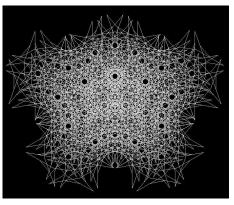
Non-Standard Type Theory

Mixing Induction and Coinduction

Images of streams of Booleans [Zantema] The Boolean Fibonacci stream:

$$f(0:s) = 0:1:fs \qquad bfib = f bfib$$

$$f(1:s) = 0:fs$$



:1:0:1:0:0:1:0:1:0:0:1:0:0:1 :0:1:0:0:1:0:0:1:0:1:0:0:1:0 :1:0:0:1:0:0:1:0:1:0:1:0:1 :0:0:1:0:0:1:0:1:0:0:1:0:0:1 :0:1:0:0:1:0:0:1:0:0:1:0:0:1:0 :0:0:1:0:0:1:0:1:0:0:1:0:1:0 :0:1:0:0:1:0:1:0:0:1:0:0:1:0 :1:0:0:1:0:1:0:0:1:0:0:1:0:1 :0:1:0:0:1:0:1:0:0:1:0:0:1:0:0 :1:0:0:1:0:1:0:0:1:0:0:1:0:1 -0.0 - 1 - 0 - 1 - 0 - 0 - 1 - 0 - 0 - 1 - 0 - 1 - 0:1:0:0:1:0:1:0:0:1:0:0:1:0:0:1 -0.0 - 1 - 0 - 1 - 0 - 0 - 1 - 0 - 0 - 1 - 0 - 1 - 0:0:1:0:1:0:0:1:0:0:1:0:1:... イロト イポト イヨト イヨト nac -

Venanzio Capretta

CoInductive Types

Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

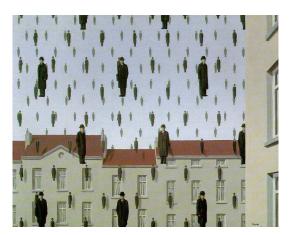
Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction



Venanzio Capretta

Coalgebras in Type Theory

・ロト ・日ト ・モト ・モト

900

Э

 $\mathsf{Puzzle:} \ 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:1:12:6:13:3:14:7:15$

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Colnductive Types: [Hagino 1987, Aczel & Mendler 1989] Type-theoretic implementation of final coalgebras.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Colnductive Types: [Hagino 1987, Aczel & Mendler 1989] Type-theoretic implementation of final coalgebras.

codata \mathbb{S}_D : Set (:) : $D \to \mathbb{S}_D \to \mathbb{S}_D$ Final Coalgebra: $\langle \mathfrak{h}_{-}, \mathfrak{t}_{-} \rangle : \mathbb{S}_{D} \to D \times \mathbb{S}_{D}$

《曰》《曰》《曰》《曰》

-

DQ (P

Venanzio Capretta

Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Colnductive Types: [Hagino 1987, Aczel & Mendler 1989] Type-theoretic implementation of final coalgebras.

codata \mathbb{S}_D : Set (:) : $D \to \mathbb{S}_D \to \mathbb{S}_D$ Final Coalgebra: $\langle \mathfrak{h}_{-}, \mathfrak{t}_{-} \rangle : \mathbb{S}_{D} \to D \times \mathbb{S}_{D}$

・ロト ・ 同ト ・ ヨト ・ ヨト

 $\begin{array}{ll} \operatorname{\textbf{codata}} \mathbb{T}_{A,B} : \operatorname{Set} & \operatorname{leaf} b \mapsto \operatorname{inl} b \\ \operatorname{leaf} : B \to \mathbb{T}_{A,B} & \operatorname{node} f \mapsto \operatorname{inr} f \\ \operatorname{node} : (A \to \mathbb{T}_{A,B}) \to \mathbb{T}_{A,B} & : \mathbb{T}_{A,B} \to B + (A \to \mathbb{T}_{A,B}) \end{array}$

Venanzio Capretta

 $\mathsf{Puzzle:} \ 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15$

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Colnductive Types: [Hagino 1987, Aczel & Mendler 1989] Type-theoretic implementation of final coalgebras.

codata \mathbb{S}_D : Set $\langle {}^{\mathfrak{h}}_{-}, {}^{\mathfrak{t}}_{-} \rangle : \widetilde{\mathbb{S}}_D \to D \times \mathbb{S}_D$ (:): $D \to \mathbb{S}_D \to \mathbb{S}_D$

codata $\mathbb{T}_{A,B}$: Set leaf $: B \to \mathbb{T}_{A,B}$ node $: (A \to \mathbb{T}_{A,B}) \to \mathbb{T}_{A,B}$: $\mathbb{T}_{A,B} \to B + (A \to \mathbb{T}_{A,B})$

Final Coalgebra:

(:), leaf and node are constructors Guardedness by constructors: [Coquand 1993] A corecursive equation has a unique solution if all recursive calls occur only directly under constructor applications.

Venanzio Capretta

Coalgebras in Type Theory

▲ロ ▶ ▲局 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

	Example of guarded definition
	Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15
Coalgebras in Type Theory	
Venanzio Capretta	Definitions are accepted if they satisfy the guardedness condition [Gimènez 1998]
Corecursive Equations	
CoInductive Types	fguard : $\mathbb{N} \to \mathbb{S}$ fguard $n = \mathbf{case} \mod(n, 3)$
Bisimulations	
Constructive Infinity	$\left\{ egin{array}{l} 0\mapsto nat\ 1\mapsto n$:: $(n-1)$:: fguard $(n+1)\ 2\mapsto n$:: $map\left(2\cdot- ight)$ (fguard $(2\cdot n)$)
Tabulations	$(2 \mapsto n : map(2 \cdot -) (fguard(2 \cdot n)))$
General Recursion	No recursive calls.
Non-Standard Type Theory	Recursive calls under two constructors. Map <i>filters</i> the constructors.
Mixing Induction and Coinduction	
	< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 < つ < で

	Methods to solve corecursive equations
	Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15
Coalgebras in Type Theory	
Venanzio Capretta	Some equations don't satisfy guardedness
Corecursive Equations	but they still have a unique solution.
Colnductive Types	
Bisimulations	
Constructive Infinity	
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	< ロ > 〈 目 > 〈 長 > 〈 差 > 〉 差 → りへ(や

	Methods to solve corecursive equations
	Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15
Coalgebras in Type Theory	
Venanzio Capretta	Some equations don't satisfy guardedness
Corecursive Equations	but they still have a unique solution. More powerful methods:
Colnductive Types	More powerful methods.
Bisimulations	
Constructive Infinity	
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	《日》《四》《王》《王》 王 今今令
	Venanzio Capretta Coalgebras in Type Theory

	Methods to solve corecursive equations
	Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15
Coalgebras in Type Theory	
Venanzio Capretta	Some equations don't satisfy guardedness
Corecursive Equations	but they still have a unique solution. More powerful methods:
Colnductive Types	
Bisimulations	► Metrics (fixpoints of contractions) [Di Giannantonio/Miculan 2002]
Constructive Infinity	
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < ○へ()

	Methods to solve corecursive equations
	Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15
Coalgebras in Type Theory	
Venanzio Capretta	Some equations don't satisfy guardedness but they still have a unique solution. More powerful methods:
Corecursive Equations	
Colnductive Types	
Bisimulations	► Metrics (fixpoints of contractions) [Di Giannantonio/Miculan 2002]
Constructive Infinity	Pebbleflow Networks [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008]
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	- ロ > - 4 日 > - 4 日 > - 4 日 > - 4 日 > - 4 日 > - 5 9 4 0 0

	Methods to solve corecursive equations
	Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15
Coalgebras in Type Theory Venanzio Capretta Corecursive Equations Colnductive Types Bisimulations Constructive Infinity Tabulations General Recursion Non-Standard Type Theory Mixing Induction and Coinduction	Some equations don't satisfy guardedness but they still have a unique solution. More powerful methods: • Metrics (fixpoints of contractions) [Di Giannantonio/Miculan 2002] • Pebbleflow Networks [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008] • Circular Coinduction (CIRC) [Roşu/Lucanu 2009]
	5.00 로 《문》《문》 《 대 》

	Methods to solve corecursive equations
	Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15
Coalgebras in Type Theory Venanzio Capretta Corecursive Equations Conductive Types Bisimulations Constructive Infinity Tabulations General Recursion Non-Standard Type Theory Mixing Induction and Coinduction	Some equations don't satisfy guardedness but they still have a unique solution. More powerful methods: Metrics (fixpoints of contractions) [Di Giannantonio/Miculan 2002] Pebbleflow Networks [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008] Circular Coinduction (CIRC) [Roşu/Lucanu 2009] Termination of Rewriting Systems [Zantema 2009]
	< ロ > 〈 唇 > 〈 差 > 〈 差 > 〉 差 つへ(や

	Methods to solve corecursive equations
	Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15
Coalgebras in Type Theory Venanzio Capretta Corecursive Equations Colnductive Types Bisimulations Constructive Infinity Tabulations General Recursion Non-Standard Type Theory Mixing Induction and Coinduction	Some equations don't satisfy guardedness but they still have a unique solution. More powerful methods: • Metrics (fixpoints of contractions) [Di Giannantonio/Miculan 2002] • Pebbleflow Networks [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008] • Circular Coinduction (CIRC) [Roşu/Lucanu 2009] • Termination of Rewriting Systems [Zantema 2009] • Unicity by Bisimulation [vc 2010]
	《日本 (四) 《日本 (日本 (日本) (日本) (日本) (日本) (日本) (日本) (日本

Bisimulations

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

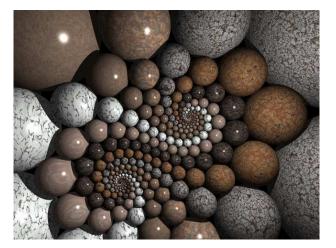
Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction



Venanzio Capretta

Coalgebras in Type Theory

< □ > < □ > < □ > < □ > < □ > < □ >

900

	Bisimulations and the Coinduction Principle
Coalgebras in Type Theory	Definition of bisimulation. [Park 1981, Milner 1989]
Venanzio Capretta	
Corecursive Equations	
Colnductive Types	
Bisimulations	
Constructive Infinity	
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	< 日 > 《 回 > 《 回 > 《 回 > 《 回 > 《 回 > 《 回 > 《

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Definition of bisimulation. [Park 1981, Milner 1989] A relation \sim on a coinductive type is a *bisimulation* if

 $x_1 \sim x_2 \Rightarrow \begin{cases} \text{same top constructor} \\ \text{same non-recursive arguments} \\ \text{recursive arguments related by} \sim \end{cases}$

Venanzio Capretta

Coalgebras in Type Theory

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Definition of bisimulation. [Park 1981, Milner 1989] A relation \sim on a coinductive type is a *bisimulation* if

 $x_1 \sim x_2 \Rightarrow \begin{cases} \text{same top constructor} \\ \text{same non-recursive arguments} \\ \text{recursive arguments related by} \sim \end{cases}$

On Streams:
$$s_1 \sim s_2 \Rightarrow {}^{\mathfrak{h}}\!s_1 = {}^{\mathfrak{h}}\!s_2 \wedge {}^{\mathfrak{h}}\!s_1 \sim {}^{\mathfrak{h}}\!s_2$$

Venanzio Capretta

Coalgebras in Type Theory

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Definition of bisimulation. [Park 1981, Milner 1989] A relation \sim on a coinductive type is a *bisimulation* if

 $x_1 \sim x_2 \Rightarrow \begin{cases} \text{same top constructor} \\ \text{same non-recursive arguments} \\ \text{recursive arguments related by} \sim \end{cases}$

n Streams:
$$s_1 \sim s_2 \Rightarrow {}^{\mathfrak{h}}\!s_1 = {}^{\mathfrak{h}}\!s_2 \wedge {}^{\mathfrak{h}}\!s_1 \sim {}^{\mathfrak{h}}\!s_2$$

n Trees:
$$t_1 \sim t_2 \Rightarrow \begin{cases} t_1 = \mathsf{leaf} \ b = t_2 \quad \lor \\ t_1 = \mathsf{node} \ f_1 \wedge t_2 = \mathsf{node} \ f_2 \\ \wedge \forall a.f_1 \ a \sim f_2 \ a \end{cases}$$

Venanzio Capretta

Coalgebras in Type Theory

Coalgebras in Type Theory

> Venanzio Capretta

Bisimulations

On

Non-Standard Type Theory

Mixing

Definition of bisimulation. [Park 1981, Milner 1989] A relation \sim on a coinductive type is a *bisimulation* if

 $x_1 \sim x_2 \Rightarrow \begin{cases} \text{same top constructor} \\ \text{same non-recursive arguments} \\ \text{recursive arguments related by} \sim \end{cases}$

On Streams:
$$s_1 \sim s_2 \Rightarrow {}^{\mathfrak{h}}s_1 = {}^{\mathfrak{h}}s_2 \wedge {}^{\mathfrak{h}}s_1 \sim {}^{\mathfrak{h}}s_2$$

On Trees:
 $t_1 \sim t_2 \Rightarrow \begin{cases} t_1 = \mathsf{leaf} \ b = t_2 & \lor \\ t_1 = \mathsf{node} \ f_1 \wedge t_2 = \mathsf{node} \ f_2 \\ \wedge \forall a. f_1 \ a \sim f_2 \ a \end{cases}$

The Coinduction principle:

 $x_1 \sim x_2 \Rightarrow x_1 = x_2$.

Venanzio Capretta

Coalgebras in Type Theory

Bisimulation as a coinductive relation

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction The Coinduction principle doesn't hold in Type Theory: Equality is intentional: Equality of normal forms

イロト 人口ト イヨト

3

Bisimulation as a coinductive relation

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction The Coinduction principle doesn't hold in Type Theory: Equality is intentional: Equality of normal forms Instead: Bisimilarity is defined as a coinductive relation:

 $\begin{array}{l} \textbf{codata} \ (\approx) : \mathbb{S} \to \mathbb{S} \to \mathsf{Prop} \\ \mathsf{conssim} : \ (x : D)(s_1, s_2 : \mathbb{S}) s_1 \approx s_2 \to (x : s_1) \approx (x : x_2) \end{array}$

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト 二日

Bisimulation as a coinductive relation

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction The Coinduction principle doesn't hold in Type Theory: Equality is intentional: Equality of normal forms Instead: Bisimilarity is defined as a coinductive relation:

$$\begin{array}{l} \textbf{codata} \ (\approx) : \mathbb{S} \to \mathbb{S} \to \mathsf{Prop} \\ \mathsf{conssim} : \ (x : D)(s_1, s_2 : \mathbb{S}) s_1 \approx s_2 \to (x : s_1) \approx (x : x_2) \end{array}$$

$$\begin{array}{l} \operatorname{\mathbf{codata}}(\approx):\mathbb{T}\to\mathbb{T}\to\operatorname{Prop}\\ \operatorname{\mathsf{leafsim}}:(b:B)\operatorname{\mathsf{leaf}}b\approx\operatorname{\mathsf{leaf}}b\\ \operatorname{\mathsf{nodesim}}:(f_1,f_2:A\to\mathbb{T})(\forall a.f_1\,a\approx f_2\,a)\\ \to(\operatorname{\mathsf{node}}f_1)\approx(\operatorname{\mathsf{node}}f_2) \end{array}$$

Venanzio Capretta

Coalgebras in Type Theory

イロト 人口ト イヨト

-

	Bisimulation and Unicity of Solutions
Coalgebras in Type Theory	Unicity of solutions for the equation:
Venanzio Capretta Corecursive Equations	$\begin{array}{l} \chi:\mathbb{S}\to\mathbb{S}\\ \chi\; \pmb{s}= \ensuremath{^{\mathfrak{h}}\!$
Colnductive Types	
Bisimulations	
Constructive Infinity	
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣) < で

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Unicity of solutions for the equation:

$$\begin{array}{l} \chi:\mathbb{S}\to\mathbb{S}\\ \chi\;s=\,{}^{\mathfrak{h}}\!\!s:\,{}^{\mathfrak{t}}\!\!s\ltimes\,{}^{\mathfrak{t}}\!\!(\chi\,{}^{\mathfrak{t}}\!\!s) \end{array}$$

Suppose χ_1 and χ_2 are solutions.

Coalgebras in Type Theory

・ロト ・ 同ト ・ ヨト ・ ヨト

3

DQ (P

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Unicity of solutions for the equation:

$$\begin{array}{l} \chi:\mathbb{S}\to\mathbb{S}\\ \chi\ s=\ {}^{\mathfrak{h}}\!\!s:\ {}^{\mathfrak{t}}\!\!s\ltimes\ {}^{\mathfrak{t}}\!(\chi\ {}^{\mathfrak{t}}\!\!s) \end{array}$$

Suppose χ_1 and χ_2 are solutions. Ad hoc bisimulation, inductively defined by:

イロト イポト イヨト イヨト

-

DQ (P

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Unicity of solutions for the equation:

Suppose χ_1 and χ_2 are solutions. Ad hoc bisimulation, inductively defined by:

 $\frac{s:\mathbb{S}}{\chi_1 s \sim \chi_2 s}(R0)$

Venanzio Capretta

Coalgebras in Type Theory

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Unicity of solutions for the equation:

Suppose χ_1 and χ_2 are solutions. Ad hoc bisimulation, inductively defined by:

$$\frac{s:\mathbb{S}}{\chi_1 s \sim \chi_2 s}(R0) \quad \frac{s, x_1, x_2:\mathbb{S} \quad x_1 \sim x_2}{s \ltimes {}^{t}\!x_1 \sim s \ltimes {}^{t}\!x_2}(R1)$$

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト

-

DQ (P

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Unicity of solutions for the equation:

Suppose χ_1 and χ_2 are solutions. Ad hoc bisimulation, inductively defined by:

$$\frac{s:\mathbb{S}}{\chi_1 s \sim \chi_2 s}(R0) \quad \frac{s, x_1, x_2:\mathbb{S} \quad x_1 \sim x_2}{s \ltimes t_{x_1} \sim s \ltimes t_{x_2}}(R1)$$
$$\frac{s, x_1, x_2:\mathbb{S} \quad x_1 \sim x_2}{x_1 \ltimes s \sim x_2 \ltimes s}(R2).$$

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト

-

DQ (P

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Unicity of solutions for the equation:

$$\begin{array}{l} \chi:\mathbb{S}\to\mathbb{S}\\ \chi\ s=\ \ \mathfrak{h}s:\ \ \mathfrak{t}s\ltimes\ \ \mathfrak{t}(\chi\ \mathfrak{t}s) \end{array}$$

Suppose χ_1 and χ_2 are solutions. Ad hoc bisimulation, inductively defined by:

$$\frac{s:\mathbb{S}}{\chi_1 s \sim \chi_2 s}(R0) \quad \frac{s, x_1, x_2:\mathbb{S} \quad x_1 \sim x_2}{s \ltimes t_{x_1} \sim s \ltimes t_{x_2}}(R1)$$

$$\frac{s, x_1, x_2 : \mathbb{S} \quad x_1 \sim x_2}{x_1 \ltimes s \sim x_2 \ltimes s} (R2).$$

By the coinduction principle and R0, $\chi_1 = \chi_2$.

Venanzio Capretta

Coalgebras in Type Theory

SOR

Constructive Infinity

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

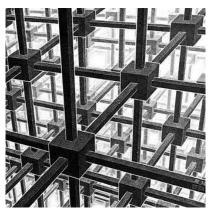
Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction



Venanzio Capretta

Coalgebras in Type Theory

イロト イヨト イヨト イヨト

500

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction **Brouwer's Continuity** (In Functional Programming terms): Given a function $f : \mathbb{S}_{\mathbb{N}} \to \mathbb{N}$, for every $s : \mathbb{S}_{\mathbb{N}}$, there exists $n : \mathbb{N}$ such that for every $s' : \mathbb{S}_{\mathbb{N}}$, if take ns' = take ns, then fs' = fs.

Venanzio Capretta

Coalgebras in Type Theory

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction **Brouwer's Continuity** (In Functional Programming terms): Given a function $f : \mathbb{S}_{\mathbb{N}} \to \mathbb{N}$, for every $s : \mathbb{S}_{\mathbb{N}}$, there exists $n : \mathbb{N}$ such that for every $s' : \mathbb{S}_{\mathbb{N}}$, if take ns' =take ns, then fs' = fs. Apparently impossible functional program: [Martin Escardo]

 $\mathsf{allb}:(\mathbb{S}_{\mathbb{B}}\to\mathbb{B})\to\mathbb{B}$

nac

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction **Brouwer's Continuity** (In Functional Programming terms): Given a function $f : \mathbb{S}_{\mathbb{N}} \to \mathbb{N}$, for every $s : \mathbb{S}_{\mathbb{N}}$, there exists $n : \mathbb{N}$ such that for every $s' : \mathbb{S}_{\mathbb{N}}$, if take ns' =take ns, then fs' = fs. Apparently impossible functional program: [Martin Escardo]

 $\mathsf{allb}: (\mathbb{S}_{\mathbb{B}} \to \mathbb{B}) \to \mathbb{B}$ $\mathsf{allb} f = f (\mathsf{counterexample} f)$

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

Colnductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction **Brouwer's Continuity** (In Functional Programming terms): Given a function $f : \mathbb{S}_{\mathbb{N}} \to \mathbb{N}$, for every $s : \mathbb{S}_{\mathbb{N}}$, there exists $n : \mathbb{N}$ such that for every $s' : \mathbb{S}_{\mathbb{N}}$, if take ns' =take ns, then fs' = fs. Apparently impossible functional program: [Martin Escardo]

 $\mathsf{allb}: (\mathbb{S}_{\mathbb{B}} \to \mathbb{B}) \to \mathbb{B}$ $\mathsf{allb} f = f (\mathsf{counterexample} f)$

```
\begin{array}{l} \text{counterexample} : (\mathbb{S}_{\mathbb{B}} \to \mathbb{B}) \to \mathbb{S}_{\mathbb{B}} \\ \text{counterexample } f = \quad \textbf{if} \ (\text{allb } f_t) \\ \quad \quad \textbf{then} \ (\text{false} : \text{counterexample } f_f) \\ \quad \textbf{else} \ (\text{true} : \text{counterexample } f_t) \\ \textbf{where} \ f_t = \lambda s.f \ (\text{true} : s) \\ \quad f_f = \lambda s.f \ (\text{false} : s) \end{array}
```

Venanzio Capretta

Coalgebras in Type Theory

SOR

	Tabulation of functions on inductive types
Coalgebras in Type Theory	Integers in binary representation: $[\mathbb{B}]$.
Venanzio Capretta	
Corecursive Equations	
CoInductive Types	
Bisimulations	
Constructive Infinity	
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	くしゃ 《間》 《川》 《間》 「川 くつく

Venanzio Capretta

Coalgebras in Type Theory

Tabulation of functions on inductive types

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Integers in binary representation: [B]. A function $f : [\mathbb{B}] \to A$ can be represented by a tree: **codata** $\mathbb{T}_A : Set$

 $\mathsf{node}: A \to \mathbb{T}_A \to \mathbb{T}_A \to \mathbb{T}_A$

Venanzio Capretta

Coalgebras in Type Theory

Tabulation of functions on inductive types

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

```
Integers in binary representation: [B].

A function f : [\mathbb{B}] \to A can be represented by a tree:

codata \mathbb{T}_A : \text{Set}

node : A \to \mathbb{T}_A \to \mathbb{T}_A \to \mathbb{T}_A

Tabulation of the function:

tabulate : ([B] \to A) \to \mathbb{T}_A

tabulate f = \text{node} (f []) (tabulate f_t) (tabulate f_f)

where f_t = \lambda s.f (true : s)

f_f = \lambda s.f (false : s)
```

SOR

Tabulation of functions on inductive types

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

```
Integers in binary representation: [B].

A function f : [B] \to A can be represented by a tree:

codata \mathbb{T}_A : Set

node : A \to \mathbb{T}_A \to \mathbb{T}_A \to \mathbb{T}_A

Tabulation of the function:

tabulate : ([B] \to A) \to \mathbb{T}_A

tabulate f = node (f []) (tabulate f_t) (tabulate f_f)

where f_t = \lambda s.f (true : s)

f_f = \lambda s.f (false : s)
```

Application of a tabulation:

apply : $\mathbb{T}_A \to [\mathbb{B}] \to A$ apply (node $a t_1 t_2$) [] = aapply (node $a t_1 t_2$) (true : l) = apply $t_1 l$ apply (node $a t_1 t_2$) (false : l) = apply $t_2 l$ = $apply t_2 = apply t_2 l$

Venanzio Capretta

Coalgebras in Type Theory

	Tabulation of functions on coinductive types
Coalgebras in Type Theory	A function $f : \mathbb{S}_A \to B$ can (?) be represented by
Venanzio Capretta	
Corecursive Equations	
CoInductive Types	
Bisimulations	
Constructive Infinity	
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	< 日 > 《 団 > 《 団 > 《 団 > 〈 ป > 〈 ป > < (ป >) < < (ป >) < < (ป >) < < (ป >) < < (ป >) < < (ป >) < < (ป >) < < (ป >) < < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป >) < (ป

Venanzio Capretta

Coalgebras in Type Theory

Tabulation of functions on coinductive types

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction A function $f : \mathbb{S}_A \to B \text{ can (?)}$ be represented by a well-founded tree: [Ghani/Hancock/Pattinson:2006]

 $\begin{array}{l} \textbf{data} \ \mathbb{T}_{A,B} : \mathsf{Set} \\ \mathsf{leaf} : B \to \mathbb{T}_{A,B} \\ \mathsf{node} : (A \to \mathbb{T}_{A,B}) \to \mathbb{T}_{A,B} \end{array}$

Venanzio Capretta

Coalgebras in Type Theory

Tabulation of functions on coinductive types

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction A function $f : \mathbb{S}_A \to B$ can (?) be represented by a well-founded tree: [Ghani/Hancock/Pattinson:2006]

 $\begin{array}{l} \textbf{data} \ \mathbb{T}_{A,B} : \mathsf{Set} \\ \mathsf{leaf} : B \to \mathbb{T}_{A,B} \\ \mathsf{node} : (A \to \mathbb{T}_{A,B}) \to \mathbb{T}_{A,B} \end{array}$

Application of a tabulation:

apply : $\mathbb{T}_{A,B} \to \mathbb{S}_A \to B$ apply (leaf b) s = bapply (node g) (a : s) = apply (g a) s

Venanzio Capretta

Coalgebras in Type Theory

SOR

Tabulation of functions on coinductive types

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction A function $f : \mathbb{S}_A \to B \text{ can (?)}$ be represented by a well-founded tree: [Ghani/Hancock/Pattinson:2006]

 $\begin{array}{l} \textbf{data} \ \mathbb{T}_{A,B} : \mathsf{Set} \\ \mathsf{leaf} : B \to \mathbb{T}_{A,B} \\ \mathsf{node} : (A \to \mathbb{T}_{A,B}) \to \mathbb{T}_{A,B} \end{array}$

Application of a tabulation:

apply : $\mathbb{T}_{A,B} \to \mathbb{S}_A \to B$ apply (leaf b) s = bapply (node g) (a : s) = apply (g a) s

Is there an inverse transformation/tabulation?

 $\mathsf{tabulate}: (\mathbb{S}_A \to B) \to \mathbb{T}_{A,B}$

Surely *B* must be a discrete/inductive type $B \rightarrow A = A = A = A$

Venanzio Capretta

Coalgebras in Type Theory

nac

Tabulation Duality?

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction What is the relation between the two kinds of tabulations?

► Function on Inductive Types : Coinductive Tabulations.

► Function on Colnductive Types : Inductive Tabulations. How to build a tabulation in the second case? We need strong intentionality.

イロト 人口ト イヨト

-

General Recursion

Coalgebras in Type Theory

- Venanzio Capretta
- Corecursive Equations
- CoInductive Types
- Bisimulations
- Constructive Infinity
- Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

Venanzio Capretta

Coalgebras in Type Theory

イロト イヨト イヨト イヨト

900

	Partial Recursion in Type Theory
Coalgebras in Type Theory	
Venanzio Capretta	In Type Theory all functions are total. How do we represent partial recursive functions?
Corecursive Equations	
Colnductive Types	
Bisimulations	
Constructive Infinity	
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆> < 豆> < 豆

Venanzio Capretta

Coalgebras in Type Theory

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction In Type Theory all functions are total. How do we represent partial recursive functions? **Partiality Monad:** [VC 2005]

> **codata** B^{ν} : Set $[-]: B \rightarrow B^{\nu}$ $\lhd: B^{\nu} \rightarrow B^{\nu}$

Venanzio Capretta

Coalgebras in Type Theory

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction In Type Theory all functions are total. How do we represent partial recursive functions? **Partiality Monad:** [VC 2005]

> **codata** B^{ν} : Set $\left[-\right]: B \rightarrow B^{\nu}$ $\lhd: B^{\nu} \rightarrow B^{\nu}$

A partial function is represented as $f : A \rightarrow B^{\nu}$.

Venanzio Capretta

Coalgebras in Type Theory

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction In Type Theory all functions are total. How do we represent partial recursive functions? **Partiality Monad:** [VC 2005]

 $\begin{array}{l} \operatorname{\textbf{codata}} B^{\nu} : \operatorname{Set} \\ \left\lceil - \right\rceil : B \to B^{\nu} \\ \lhd : B^{\nu} \to B^{\nu} \end{array}$

A partial function is represented as $f : A \to B^{\nu}$. f defined on a: $f = a = a a a \cdots a [b]$.

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト 二日

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

Colnductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction In Type Theory all functions are total. How do we represent partial recursive functions? **Partiality Monad:** [VC 2005]

 $\begin{array}{l} \operatorname{\textbf{codata}} B^{\nu} : \operatorname{Set} \\ \left\lceil - \right\rceil : B \to B^{\nu} \\ \lhd : B^{\nu} \to B^{\nu} \end{array}$

A partial function is represented as $f : A \to B^{\nu}$. f defined on a: $f = a = a a a \cdots a [b]$. f undefined on a: $f = a = a a a a a \cdots a$.

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト 二日

	Bove/Capretta method
Coalgebras in Type Theory Venanzio Capretta	Different approach to partial recursive functions.[Bove/VC 2001]
Corecursive Equations	
CoInductive Types	
Bisimulations	
Constructive Infinity	
Tabulations	
General Recursion	
Non-Standard Type Theory	
Mixing Induction and Coinduction	
	《日》《郡》《臣》《臣》 臣 - 외익()

Venanzio Capretta

Coalgebras in Type Theory

Bove/Capretta method

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Different approach to partial recursive functions. [Bove/VC 2001] A partial function $f : A \rightarrow B$ is represented by A domain predicate and a function on the domain:

 $\mathsf{Dom} : A \to \mathsf{Prop}$ $f : (a : A)\mathsf{Dom} a \to B$

Venanzio Capretta

Coalgebras in Type Theory

-

$\mathsf{Bove}/\mathsf{Capretta}\ \mathsf{method}$

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Different approach to partial recursive functions. [Bove/VC 2001] A partial function $f : A \rightarrow B$ is represented by A domain predicate and a function on the domain:

 $Dom : A \to Prop$ $f : (a : A)Dom a \to B$

Example, function that seeks a 0 in a stream:

 $\mathsf{seek}:\mathbb{S}_{\mathbb{N}} \rightharpoonup \mathbb{N}$

Venanzio Capretta

Coalgebras in Type Theory

Bove/Capretta method

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Different approach to partial recursive functions. [Bove/VC 2001] A partial function $f : A \rightarrow B$ is represented by A domain predicate and a function on the domain:

 $Dom : A \to Prop$ $f : (a : A)Dom a \to B$

Example, function that seeks a 0 in a stream:

seek : $\mathbb{S}_{\mathbb{N}} \rightarrow \mathbb{N}$

data $\mathsf{Dom}_{\mathsf{seek}} : \mathbb{S}_{\mathbb{N}} \to \mathsf{Prop}$ seek : $(s : \mathbb{S}_{\mathbb{N}})\mathsf{Dom}_{\mathsf{seek}} s \to \mathbb{N}$

Venanzio Capretta

Coalgebras in Type Theory

SOR

Bove/Capretta method

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Different approach to partial recursive functions.[Bove/VC 2001] A partial function $f : A \rightarrow B$ is represented by A domain predicate and a function on the domain:

 $Dom : A \to Prop$ $f : (a : A)Dom a \to B$

Example, function that seeks a 0 in a stream:

 $\mathsf{seek}:\mathbb{S}_{\mathbb{N}} o\mathbb{N}$

data $\text{Dom}_{\text{seek}} : \mathbb{S}_{\mathbb{N}} \to \text{Prop}$ found : $(s : \mathbb{S}_{\mathbb{N}})\text{Dom}_{\text{seek}}(0 : s)$ notfound : $(n : \mathbb{N})(s : \mathbb{S}_{\mathbb{N}})\text{Dom}_{\text{seek}} s \to \text{Dom}_{\text{seek}}(S n : s)$ seek : $(s : \mathbb{S}_{\mathbb{N}})\text{Dom}_{\text{seek}} s \to \mathbb{N}$ seek (0 : s) (found z) = 0seek (S n : s) (notfound n s h) = S (seek s h)

Venanzio Capretta

Coalgebras in Type Theory

SOR

Computation by Prophecy

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

Coinductive version of the domain: trace of computation. [Bove/VC 2007]

Venanzio Capretta

Coalgebras in Type Theory

・ロト ・ 同ト ・ ヨト ・ ヨト

DQ CV

3

Computation by Prophecy

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Coinductive version of the domain: trace of computation. [Bove/VC 2007]

 $\begin{array}{l} \textbf{codata} \; \mathsf{Trace}_{\mathsf{seek}} : \mathbb{S}_{\mathbb{N}} \to \mathsf{Prop} \\ \mathsf{found} : (s : \mathbb{S}_{\mathbb{N}}) \mathsf{Trace}_{\mathsf{seek}} \left(0 : s \right) \\ \mathsf{notfound} : (n : \mathbb{N})(s : \mathbb{S}_{\mathbb{N}}) \mathsf{Trace}_{\mathsf{seek}} \, s \to \mathsf{Trace}_{\mathsf{seek}} \left(\mathsf{S} \, n : s \right) \\ \mathsf{seek} : (s : \mathbb{S}_{\mathbb{N}}) \mathsf{Trace}_{\mathsf{seek}} \, s \to \mathbb{N}^{\nu} \end{array}$

Coalgebras in Type Theory

・ロト ・ 同ト ・ ヨト ・ ヨト

-

DQ (P

Computation by Prophecy

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

Colnductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Coinductive version of the domain: trace of computation. [Bove/VC 2007]

 $\begin{array}{l} \textbf{codata} \; \mathsf{Trace}_{\mathsf{seek}} : \mathbb{S}_{\mathbb{N}} \to \mathsf{Prop} \\ \mathsf{found} : (s : \mathbb{S}_{\mathbb{N}}) \mathsf{Trace}_{\mathsf{seek}} \left(0 : s \right) \\ \mathsf{notfound} : (n : \mathbb{N})(s : \mathbb{S}_{\mathbb{N}}) \mathsf{Trace}_{\mathsf{seek}} \, s \to \mathsf{Trace}_{\mathsf{seek}} \left(\mathsf{S} \, n : s \right) \\ \mathsf{seek} : (s : \mathbb{S}_{\mathbb{N}}) \mathsf{Trace}_{\mathsf{seek}} \, s \to \mathbb{N}^{\nu} \end{array}$

In all these representations: How do we effectively compute the function? Coinductive objects don't automatically unfold. Domain predicate must be proved.

Venanzio Capretta

Coalgebras in Type Theory

SOR

Computation by Judgement Rewriting

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction To compute seek $(7 : 2 : 5 : \cdots)$

Assume the domain predicate and type-check the result:

 $h: \text{Dom}_{\text{seek}} (7 : 2 : 5 : \cdots) \vdash \text{seek} (7 : 2 : 5 : \cdots) h: \mathbb{N}$

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト

-

DQ (P

Computation by Judgement Rewriting

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction To compute seek $(7 : 2 : 5 : \cdots)$

Assume the domain predicate and type-check the result:

 $h: \text{Dom}_{\text{seek}} (7:2:5:\cdots) \vdash \text{seek} (7:2:5:\cdots) h: \mathbb{N}$

Inversion: h must have the form (notfound 6 (2 : 5 : · · ·) h_1). Rewrite the judgement:

イロト イポト イヨト イヨト

-

DQ (P

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction To compute seek $(7 : 2 : 5 : \cdots)$

Assume the domain predicate and type-check the result:

 $h: \text{Dom}_{\text{seek}} (7 : 2 : 5 : \cdots) \vdash \text{seek} (7 : 2 : 5 : \cdots) h : \mathbb{N}$

Inversion: h must have the form (notfound 6 (2 : 5 : · · ·) h_1). Rewrite the judgement:

 $\mapsto h_1 : \text{Dom}_{\text{seek}} (2 : 5 : \cdots) \\ \vdash \text{seek} (7 : 2 : 5 : \cdots) (\text{notfound } 6 (2 : 5 : \cdots) h_1) : \mathbb{N}$

Venanzio Capretta

Coalgebras in Type Theory

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction To compute seek $(7 : 2 : 5 : \cdots)$

Assume the domain predicate and type-check the result:

 $h: \text{Dom}_{\text{seek}} (7:2:5:\cdots) \vdash \text{seek} (7:2:5:\cdots) h: \mathbb{N}$

Inversion: h must have the form (notfound 6 (2 : 5 : · · ·) h_1). Rewrite the judgement:

 $\begin{array}{ll} \mapsto & h_1 : \operatorname{Dom}_{\operatorname{seek}} \left(2 : 5 : \cdots \right) \\ & \vdash \operatorname{seek} \left(7 : 2 : 5 : \cdots \right) \left(\operatorname{notfound} 6 \left(2 : 5 : \cdots \right) h_1 \right) : \mathbb{N} \\ & \rightsquigarrow & h_1 : \operatorname{Dom}_{\operatorname{seek}} \left(2 : 5 : \cdots \right) \vdash \operatorname{Sseek} \left(2 : 5 : \cdots \right) h_1 : \mathbb{N} \end{array}$

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

Colnductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction To compute seek $(7 : 2 : 5 : \cdots)$

Assume the domain predicate and type-check the result:

 $h: \text{Dom}_{\text{seek}} (7 : 2 : 5 : \cdots) \vdash \text{seek} (7 : 2 : 5 : \cdots) h : \mathbb{N}$

Inversion: h must have the form (notfound 6 (2 : 5 : · · ·) h_1). Rewrite the judgement:

 $\begin{array}{ll} \mapsto & h_1 : \operatorname{Dom}_{\operatorname{seek}} \left(2 : 5 : \cdots \right) \\ \vdash \operatorname{seek} \left(7 : 2 : 5 : \cdots \right) \left(\operatorname{notfound} 6 \left(2 : 5 : \cdots \right) h_1 \right) : \mathbb{N} \\ \rightsquigarrow & h_1 : \operatorname{Dom}_{\operatorname{seek}} \left(2 : 5 : \cdots \right) \vdash \operatorname{Sseek} \left(2 : 5 : \cdots \right) h_1 : \mathbb{N} \\ \mapsto & h_2 : \operatorname{Dom}_{\operatorname{seek}} \left(5 : \cdots \right) \vdash \operatorname{SSseek} \left(5 : \cdots \right) h_2 : \mathbb{N} \end{array}$

Venanzio Capretta

Coalgebras in Type Theory

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction To compute seek $(7 : 2 : 5 : \cdots)$

Assume the domain predicate and type-check the result:

 $h: \text{Dom}_{\text{seek}} (7 \pm 2 \pm 5 \pm \cdots) \vdash \text{seek} (7 \pm 2 \pm 5 \pm \cdots) h \pm \mathbb{N}$

Inversion: h must have the form (notfound 6 (2 : 5 : · · ·) h_1). Rewrite the judgement:

 $\begin{array}{ll} \mapsto & h_1 : \operatorname{Dom}_{\operatorname{seek}} \left(2 \ddagger 5 \ddagger \cdots\right) \\ \vdash & \operatorname{seek} \left(7 \ddagger 2 \ddagger 5 \ddagger \cdots\right) \left(\operatorname{notfound} 6 \left(2 \ddagger 5 \ddagger \cdots\right) h_1\right) : \mathbb{N} \\ \rightsquigarrow & h_1 : \operatorname{Dom}_{\operatorname{seek}} \left(2 \ddagger 5 \ddagger \cdots\right) \vdash \operatorname{Sseek} \left(2 \ddagger 5 \ddagger \cdots\right) h_1 : \mathbb{N} \\ \mapsto & h_2 : \operatorname{Dom}_{\operatorname{seek}} \left(5 \ddagger \cdots\right) \vdash \operatorname{SSseek} \left(5 \ddagger \cdots\right) h_2 : \mathbb{N} \end{array}$

Connection with Non-Standard Type Theory [Martin-Löf 1988]

Venanzio Capretta

Coalgebras in Type Theory

イロト 人口ト イヨト

Mixing Induction and Coinduction

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

Coalgebras in Type Theory

イロト イヨト イヨト イヨト

Mixed Inductive/Coinductive Types

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

Colnductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Data structures with both: [Danielsson/Altenkirch 2009]

Constructors that must be well-founded;

► Constructors that can be iterated infinitely

Example, equality for the partiality monad:

 $\begin{array}{l} \textbf{codata} (\simeq) : B^{\nu} \to B^{\nu} \to \mathsf{Prop} \\ \texttt{eqstep} : (x_1, x_2 : B^{\nu}) x_1 \simeq x_2 \to \lhd x_1 \simeq \lhd x_2 \\ \texttt{eqval} : (b : B) \lceil b \rceil \simeq \lceil b \rceil \\ \texttt{eqmix}_1 : (x_1, x_2 : B^{\nu}) x_1 \simeq x_2 \to \lhd x_1 \simeq x_2 \\ \texttt{eqmix}_2 : (x_1, x_2 : B^{\nu}) x_1 \simeq x_2 \to x_1 \simeq \lhd x_2 \end{array}$

Venanzio Capretta

Coalgebras in Type Theory

Mixed Inductive/Coinductive Types

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Data structures with both: [Danielsson/Altenkirch 2009]

► Constructors that must be well-founded;

Constructors that can be iterated infinitely
 Example, equality for the partiality monad:

 $\begin{array}{l} \textbf{codata} (\simeq) : B^{\nu} \to B^{\nu} \to \mathsf{Prop} \\ \texttt{eqstep} : (x_1, x_2 : B^{\nu}) x_1 \simeq x_2 \to \lhd x_1 \simeq \lhd x_2 \\ \texttt{eqval} : (x_1, x_2 : B^{\nu}) (b : B) x_1 \downarrow b \to x_2 \downarrow b \to x_1 \simeq x_2 \end{array}$

 $x \downarrow b$ inductive convergence relation

Venanzio Capretta

Coalgebras in Type Theory

▲ロ ▶ ▲局 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Mixed Inductive/Coinductive Types

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction Data structures with both: [Danielsson/Altenkirch 2009]

- Constructors that must be well-founded;
- \blacktriangleright Constructors that can be iterated infinitely

Example, equality for the partiality monad:

data (\simeq) : $B^{\nu} \to B^{\nu} \to \mathsf{Prop}$ eqstep : $(x_1, x_2 : B^{\nu})x_1 \stackrel{\infty}{\simeq} x_2 \to \triangleleft x_1 \simeq \triangleleft x_2$ eqval : $(b : B)\lceil b \rceil \simeq \lceil b \rceil$ eqmix₁ : $(x_1, x_2 : B^{\nu})x_1 \simeq x_2 \to \triangleleft x_1 \simeq x_2$ eqmix₂ : $(x_1, x_2 : B^{\nu})x_1 \simeq x_2 \to x_1 \simeq \triangleleft x_2$

The ∞ marks arguments that need not be well-founded

Venanzio Capretta

Coalgebras in Type Theory

イロト イポト イヨト イヨト 二日

	Conclusion										
Coalgebras in Type Theory											
Venanzio Capretta											
Corecursive Equations	Interesting topics for future research:										
Colnductive Types											
Bisimulations											
Constructive Infinity											
Tabulations											
General Recursion											
Non-Standard Type Theory											
Mixing Induction and Coinduction											
			▶	< ₫	₽ ►	-	Þ	4.3	≣ ⊳.	1	990

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

Interesting topics for future research:

► Solution of corecursive equations;

Venanzio Capretta

Coalgebras in Type Theory

イロト 人間ト イヨト イヨト

 \equiv

990

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

Interesting topics for future research:

- ► Solution of corecursive equations;
- ► Tabulations of functions on coinductive domains;

Venanzio Capretta

Coalgebras in Type Theory

イロト 人口ト イヨト

3

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

Interesting topics for future research:

- ► Solution of corecursive equations;
- Tabulations of functions on coinductive domains;
- ► General recursion and non-standard type theory;

イロト 人口ト イヨト

3

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

Colnductiv Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

Interesting topics for future research:

- ► Solution of corecursive equations;
- Tabulations of functions on coinductive domains;
- General recursion and non-standard type theory;
- Mixed inductive/coinductive definitions.

イロト 人口ト イヨト

-

Coalgebras in Type Theory

Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

Interesting topics for future research:

- ► Solution of corecursive equations;
- Tabulations of functions on coinductive domains;
- General recursion and non-standard type theory;
- ► Mixed inductive/coinductive definitions.

There are many other exiting topics.

-

DQ (P

MSFP

Coalgebras in Type Theory

> Venanzio Capretta

Corecursive Equations

CoInductive Types

Bisimulations

Constructive Infinity

Tabulations

General Recursion

Non-Standard Type Theory

Mixing Induction and Coinduction

Mathematically Structured Functional Programming Baltimore, 25 September 2010 http://cs.ioc.ee/msfp/msfp2010/ Deadline: 9 - 16 April

Venanzio Capretta

Coalgebras in Type Theory