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Streams: infinite sequence over a domain D, Sp.

nat=0:1:2:3:4:5:6:---:Sy
fib=0:1:1:2:3:5:8:2---:Sy
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Streams: infinite sequence over a domain D, Sp
Notation:

nat=0:1:2:3:4:5:6:---:Sy
fib=0:1:1:2:3:5:28z2---:8Sy
head :

fhat = 0
tail :

fhat=1:2:3:4:5:6:7:---
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Streams: infinite sequence over a domain D, Sp.
nat=0:1:2:3:4:5:6:---:Sy
fib=0:1:1:2:3:5:28z2---:8Sy
Notation:
head :

fhat = 0
tail :

B3nat = 3
fhat=1:2:3:4:5:6:7:---

b3fib = 2
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Streams

Streams: infinite sequence over a domain D, Sp.
nat=0:1:2:3:4:5:6:---:Sy
fib=0:121:223:528:---:SN

Notation:

head : fat=0 Bpat=3 HBfib=2
tail : hat=1:2:3:4:5:6:7:---
Mnat=4:5:6:7:8:9:10:---

Mib=3:5:8:13:21:34:55:---
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Streams: infinite sequence over a domain D, Sp.
nat=0:1:2:3:4:5:6:---:Sy
fib=0:121:2:3:5:8:---:Sy

Notation:

head : fat=0 "Bpat=3 HBfib=2
tail : hat=1:2:3:4:5:6:7:---
Mnat =4:5:6:7:8:9:10:---
ib=3:5:8:13:21:34:55=---
Corecursive equations on streams: [Rutten 2007]

nat=0:nat+1 fib = 0 : fib + (1 : fib)
(x:s1) X s =x:5 K5l
even(x:s)=x:odds odd (x :s) =evens
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Equations that are more difficult to solve [zantema 2009]
Three functions of type S — S:

¢ s=":¢(even's) x p(odds)
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Equations that are more difficult to solve [zantema 2009]
Three functions of type S — S:

¢ s=":¢(even's) x p(odds)
Xs="%:5x{x5)
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Equations that are more difficult to solve [zantema 2009]
Three functions of type S — S:

¢ s=":¢(even's) x p(odds)
Xs="%:5x{x5)

Y s = :even(zp(odd s)) x odd(z/(even’s))

Venanzio Capretta

«O>r «Fr «=>»
Coalgebras in Type Theory

4

DA




Harder corecursive equations

CT‘;:E%?;Q;:; Equations that are more difficult to solve zzntems 2009]
Three functions of type S — S:
¢ s="Y:¢(even'’s) x ¢(odd )
Corecursive
Equations X s = hS - t5 X f(X ts)
Colnductive

Types 1 s = Y%z even()(odd s)) x odd(y(even s))

Bisimulations

Venanzio
Capretta

A=l Puzzle: Find equation fs = C[s, f] that generates:
nfinity

Tabulations fnat= 0:0:1:0:2:1:3:0:4:2:5:1:26:3:7:0:8
g 4:9:2:10:5:11:1:12:26:13:3:14:7:15
Non-Standard :0:16:8:17:4:18:9:19:2:20:10:21:5:22
LGS 211:23:1:24:12:25:6:26:13:27:3:28:14
o e 220:7:30:15:31:0:32:16:33:8:34:17:35
Conductien :4:36:18:37:9:38:---
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Images of streams of Booleans (zantema)
The Boolean Fibonacci stream:

f(0:s)=0:1:fs bfib = f bfib
f(l:s)=0:fs
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Images of recursive streams

Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Corlzanes Images of streams of Booleans
Type Theory . .
The Boolean Fibonacci stream:

Venanzio

Sl f(0:s)=0:1:fs bfib = f bfib
Corecursive f (]. . 5) =0:fs
Equations

Colnductive
Types
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Constructive
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Mixing
Induction and
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COI nd uctive Types: [Hagino 1987, Aczel & Mendler 1989]

Type-theoretic implementation of final coalgebras.
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COI nductive Types: [Hagino 1987, Aczel & Mendler 1989]

Type-theoretic implementation of final coalgebras.
codata Sp : Set

Final Coalgebra:
<h—,t—> :Sp — D xSp
(:):D—Sp—Sp
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Colnductive Definitions

Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

C0|nductive TypeS: [Hagino 1987, Aczel & Mendler 1989]
Type-theoretic implementation of final coalgebras.

Final Coalgebra:
codata Sp : Set ("~ Y):Sp - DxSp
(:):D—Sp—Sp

codata Ty g : Set leaf b +— inl b
leaf : B — Ta g node f — inrf
node : (A_’TA,B)_)TA,B :Tag— B+ (A—Tap)
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Colnductive Definitions
Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in

Uyfpe Ulitzesy Colnductive Types: [Hagino 1987, Aczel & Mendier 1989]

Venanzio Type-theoretic implementation of final coalgebras.

apretta
Corecursive Final Coal ebra:
g

Equati ~
e codata Sp : Set () :Sp — D xSp
Colnductive
T (:):D—Sp—Sp
Bisimulations
Constructive COdata ’]I‘A7B . Set |eaf b — Inl b
i leaf : B— Tag node f — inr f
Tabulati
Ga | node: (A—Tag) = Tag Tap — B+ (A—Tag)
enera
Recursion

Nonstandard . (2), leaf and node are constructors

Type Theory Guardedness by constructors:  [coquand 1993]

Mixin : ; i ion i i
e S A corecursive equation has a unique solution if all recursive
C . d . . H H

sneneen calls occur only directly under constructor applications.
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Example of guarded definition
Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15
Coalgebras in

Type Theory

Venanzio

Capretts Definitions are accepted if they satisfy the guardedness

condition [Gimenez 100g]

Corecursive

Equations

Colnductive fguard . N - S

W fguard n = case mod(n, 3)

Bisimulations 0 s nat

C t ti

infinty 1—n:(n—1):fguard(n+1)
Tabulations 2+ n:zmap(2-—)(fguard (2 - n))
General .

P No recursive calls.

Non-Standard Recursive calls under two constructors.

Type Theory .

. Map filters the constructors.
ixing

Induction and

Coinduction

Venanzio Capretta Coalgebras in Type Theory



Methods to solve corecursive equations
Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in
Type Theory

Venanzio
Caprett: . , .
sprena Some equations don't satisfy guardedness

Corecursive but they still have a unique solution.

Equations
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Methods to solve corecursive equations
Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in
Type Theory

Venanzio
Caprett: . 1 H
e Some equations don't satisfy guardedness
Corecursive but they still have a unique solution.
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, More powerful methods:
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Methods to solve corecursive equations
Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in
Type Theory

Venanzio

Copretta Some equations don't satisfy guardedness

Corecursive but they still have a unique solution.
Equations
More powerful methods:

Colnductive
Types . . . .
» Metrics (fixpoints of contractions) (i Giannantonio/Miculan 2002]
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Methods to solve corecursive equations
Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in
Type Theory

Venanzio

Copretta Some equations don't satisfy guardedness

Corecursive but they still have a unique solution.
Equations
More powerful methods:

Colnductive
Types . . . .
» Metrics (fixpoints of contractions) (i Giannantonio/Miculan 2002]

Bisimulations

Constructive > PebbleﬂOW NetWOI’kS [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008]
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Methods to solve corecursive equations
Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in
Type Theory

Venanzio

Copretta Some equations don't satisfy guardedness

Corecursive but they still have a unique solution.
Equations
More powerful methods:

Colnductive
Types . . . .
» Metrics (fixpoints of contractions) (i Giannantonio/Miculan 2002]

Bisimulations

Constructive > PebbleﬂOW NetWOI’kS [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008]
Infinity . i i
> CII’CU|3I’ Co|ndUCt|On (CIRC) [Rosu/Lucanu 2009]

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Methods to solve corecursive equations
Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in
Type Theory

Venanzio

Copretta Some equations don't satisfy guardedness

Corecursive but they still have a unique solution.
Equations
More powerful methods:

Colnductive
Types . . . .
» Metrics (fixpoints of contractions) (i Giannantonio/Miculan 2002]
Bisimulations
Constructive > PebbleﬂOW NetWOI’kS [Endrullis/Grabmayer/Hendriks/Isihara/Klop 2008]
Infinity

> CiI’CU|aI’ COindUCtion (CIRC) [Rosu/Lucanu 2009]

Tabulations

General > Termination Of ReWr|t|ng Systems [Zantema 2009]

Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Methods to solve corecursive equations
Puzzle: 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:4:9:2:10:5:11:1:12:6:13:3:14:7:15

Coalgebras in
Type Theory

Venanzio

Copretta Some equations don't satisfy guardedness

Corecursive but they still have a unique solution.
Equations
More powerful methods:

Colnductive
Types . . . .
Metrics (fixpoints of contractions) [pi Giannantonio/Miculan 200)

Bisimulations

PebbleﬂOW NetWOI’kS [Endrullis/Grabmayer /Hendriks/Isihara/Klop 2008]

Constructive
Infinity

Tabulations

Termination of Rewriting Systems (zantema 2000]

General
Recursion

>
>
» Circular Coinduction (C|RC) [Rosu/Lucanu 2009]
>
»

oo Unicity by Bisimulation (vc 2010

Type Theory
Mixing
Induction and
Coinduction
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Bisimulations
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Definition of bisimulation. [par 1981, Milner 1980]

Venanzio Capretta

«0O)r

«Fr <
Coalgebras in Type Theory

DA



Coalgebras in
Type Theory

Venanzio

Capretta
Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Bisimulations and the Coinduction Principle

Definition of bisimulation. (par 1981, Milner 1989]
A relation ~ on a coinductive type is a bisimulation if

same top constructor
X] ~ Xp = { Same non-recursive arguments
recursive arguments related by ~

Venanzio Capretta Coalgebras in Type Theory



Bisimulations and the Coinduction Principle

Coalgebras in Definition of bisimulation. [par 1981, Milner 1989]
Type Theory . . . . . . . .
A relation ~ on a coinductive type is a bisimulation if

Venanzio
Capretta
same top constructor

e x|~ Xp = same non-recursive arguments
quations .

_ recursive arguments related by ~
Colnductive
Types
Esiufkins On Streams: s; ~ 5 = sy = 55 A ls) sy

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Bisimulations and the Coinduction Principle

Definition of bisimulation. [par 1981, Milner 1989]
A relation ~ on a coinductive type is a bisimulation if

same top constructor

X] ~ Xp = { Same non-recursive arguments
recursive arguments related by ~

On Streams: s; ~ 5 = sy = 55 A ls) sy
On Trees:
ti=leafb=1t, V
tp ~ th = t1 = nodefi A tp = node f»
AVa.fra~ fha
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Bisimulations and the Coinduction Principle

Definition of bisimulation. [par 1981, Milner 1989]
A relation ~ on a coinductive type is a bisimulation if

same top constructor
X] ~ Xp = { Same non-recursive arguments
recursive arguments related by ~

On Streams: s; ~ 5 = sy = 55 A ls) sy
On Trees:
ti=leafb=1t, V
tp ~ th = t1 = nodefi A tp = node f»
AVa.fra~ fha
The Coinduction principle:

X1 ~ Xp = X1 = X2.
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Equality is intentional: Equality of normal forms
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Bisimulation as a coinductive relation

Coalgebras in
Type Theory

Venanzio
Capretta

The Coinduction principle doesn’t hold in Type Theory:
Equality is intentional: Equality of normal forms

Corecursive

Equations Instead: Bisimilarity is defined as a coinductive relation:
Colnductive

Types codata (=) :S — S — Prop

EfiEiran: conssim : (x : D)(s1,52 : S)s1 & 55 — (x = 51) & (X = x2)
Constructive

Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Infinity
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Bisimulation as a coinductive relation

The Coinduction principle doesn’t hold in Type Theory:
Equality is intentional: Equality of normal forms
Instead: Bisimilarity is defined as a coinductive relation:

codata(=x):S — S — Prop
conssim : (x : D)(s1,52 : S)s1 & 55 — (x = 51) & (X = x2)

codata(~): T — T — Prop

leafsim : (b : B)leaf b ~ leaf b

nodesim : (f1,f: A— T)(Va.fia~ f a)
— (node ) = (node f,)

Venanzio Capretta Coalgebras in Type Theory



Unicity of solutions for the equation:
X:S—S

Xs="%:5x{x5)
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Unicity of solutions for the equation:

X:S—S

Xs="%:5x{x5)
Suppose X1 and X» are solutions.
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Bisimulation and Unicity of Solutions

Coalgebras in

Type Theory Unicity of solutions for the equation:

Venanzio

Capretta X : S N S
Corecursive X s = hs - tS X t()( ts)
Equations

Colnductive

Types Suppose X1 and X» are solutions.
Bisimulations Ad hoc bisimulation, inductively defined by:

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Bisimulation and Unicity of Solutions

Coalgebras in

Type Theory Unicity of solutions for the equation:

Venanzio

Capretta X : S N S
Corecursive X S = hs . tS X t()( tS)
Equations

Colnductive

Types Suppose X1 and X» are solutions.
Bisimulations Ad hoc bisimulation, inductively defined by:

Constructive
Infinity

<
SO
Tabulations T ——— ( RO)
X155~ X2S
General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Non-Standard
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Coinduction

Bisimulation and Unicity of Solutions

Unicity of solutions for the equation:
X:S—S
Xs="%:5x{x%)

Suppose X1 and X3 are solutions.
Ad hoc bisimulation, inductively defined by:

s:S S,X1,X0 1S X1~ Xp
X155~ X2S SX X7 ~ S X

Venanzio Capretta Coalgebras in Type Theory
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Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Bisimulation and Unicity of Solutions

Unicity of solutions for the equation:

X:S—S
Xs="%:5x{x%)

Suppose X1 and X3 are solutions.
Ad hoc bisimulation, inductively defined by:
s:S S,X1,X0 1S Xy ~ X

(RO)

X185~ Xos sX 5 ~s X

(R1)

S, X1, X0 1S x|~ Xo

(R2).
X| X S~ Xy XS

Venanzio Capretta Coalgebras in Type Theory
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Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Bisimulation and Unicity of Solutions

Unicity of solutions for the equation:
X:S—S
Xs="%:5x{x%)

Suppose X1 and X3 are solutions.
Ad hoc bisimulation, inductively defined by:

s:S S, X1,X0 1 S ~
7\)(/?0) X1, X2 1 8 X1 X2(R1)
X1S~ X2S sX % ~ s KX X

S, X1,X0 1S X1~ Xo

(R2).
X1 X§~Xy XS

By the coinduction principle and RO, X1 = X2 .
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Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Constructive Infinity
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Brouwer's Continuity Principle

el Brouwer’s Continuity (In Functional Programming terms):
Venanio Given a function f : Sy — N,
Capretta for every s : Sy, there exists n: N such that

for every s’ : Sy, if takens’ = takens, then fs’' = fs.

Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Brouwer's Continuity Principle

Coalgebrasin - Brouwer’s Continuity (In Functional Programming terms):
Type Theory ) i
Given a function f : Sy — N,

Venanzio

Capretta for every s : Sy, there exists n: N such that
Corcamiee for every s’ : Sy, if takens’ = takens, then fs’' = fs.
Equations Apparently impossible functional program: (Martin Escardo]
Colnductive
Types

allb: (S — B) — B

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Brouwer's Continuity Principle

Coalgebrasin - Brouwer’s Continuity (In Functional Programming terms):
Type Theory ) i
Given a function f : Sy — N,

Venanzio

Capretta for every s : Sy, there exists n: N such that
Corcamiee for every s’ : Sy, if takens’ = takens, then fs’' = fs.
Equations Apparently impossible functional program: (Martin Escardo]
Colnductive
Types

allb: (S — B) — B
allb f = f (counterexample )

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Coalgebras in
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Venanzio

Capretta
Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory

Mixing
Induction and
Coinduction

Brouwer's Continuity Principle

Brouwer’s Continuity (In Functional Programming terms):
Given a function f : Sy — N,

for every s : Sy, there exists n: N such that

for every s’ : Sy, if takens’ = takens, then fs’' = fs.
Apparently impossible functional program: [Martin Escardo]

allb: (S — B) — B
allb f = f (counterexample )

counterexample : (Sp — B) — Sp
counterexample f = if (allb f;)
then (false : counterexample f¢)
else (true : counterexample f;)
where f; = As.f (true : s)
fr = As.f (false : s)
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Integers in binary representation: [B].
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Integers in binary representation: [B].

A function f : [B] — A can be represented by a tree:
codata Ty : Set

node: A— Tg— Ta— Ty
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Venanzio

Capretta
Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
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Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Tabulation of functions on inductive types

Integers in binary representation: [B].
A function f : [B] — A can be represented by a tree:

codata T4 : Set
node:AHTA%TA%TA
Tabulation of the function:

tabulate : ([B] — A) — Tx
tabulate f = node (f []) (tabulate f;) (tabulate ff)
where f; = As.f (true:s)
fr = Xs.f (false : s)
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Capretta
Corecursive
Equations
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Types
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Constructive
Infinity

Tabulations
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Non-Standard
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Coinduction

Tabulation of functions on inductive types

Integers in binary representation: [B].
A function f : [B] — A can be represented by a tree:

codata T4 : Set
node: A— Ty — Ty — Ty
Tabulation of the function:
tabulate : ([B] — A) — Tx
tabulate f = node (f []) (tabulate f;) (tabulate ff)
where f; = As.f (true:s)
fr = Xs.f (false : s)
Application of a tabulation:
apply : Ta — [B] — A
apply (nodeat; t)[] = a
apply (node a ty tp) (true : /) = apply t1 /
apply (node a t; to) (false : /) = apply to /
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A function f : Sp — B can (?) be represented by
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A function f : Sp — B can (?) be represented by
a well-founded tree: [Ghani/Hancock/Pattinson:2006]

data Ty g : Set

leaf : B — TA,B

node : (A — TA,B) — ']I‘Ayg
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Tabulation of functions on coinductive types

A function f : Sy — B can (7) be represented by
a We”—founded tree: [Ghani/Hancock/Pattinson:2006]

data T4 g : Set
leaf : B — Tap
node: (A— Tag) — Tas

Application of a tabulation:

apply : Tap — Sa— B
apply (leaf b)s = b
apply (nodeg) (a:s) = apply (ga) s
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Capretta
Corecursive
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Colnductive
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Constructive
Infinity
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Tabulation of functions on coinductive types

A function f : Sy — B can (7) be represented by
a We”—founded tree: [Ghani/Hancock/Pattinson:2006]

data T4 g : Set
leaf : B — TA.B

node: (A— Tag) — Tas
Application of a tabulation:
apply : Tag —Sa — B
apply (leaf b)s = b
apply (nodeg) (a:s) = apply (ga) s
Is there an inverse transformation/tabulation?
tabulate: (Sa — B) — Tag

Surely B must be a discrete/inductive type.,
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Tabulation Duality?

Coalgebras in
Type Theory

Venanzio
Capretta

Corecursive

Equations What is the relation between the two kinds of tabulations?
Colnducti . . . . .
Types » Function on Inductive Types : Coinductive Tabulations.
Bisimulations » Function on Colnductive Types : Inductive Tabulations.
Constructive . . .

Tty How to build a tabulation in the second case?

Tabulations We need strong intentionality.

General

Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Venanzio Capretta Coalgebras in Type Theory



Coalgebras in
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Capretta
Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction

General Recursion
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In Type Theory all functions are total.

How do we represent partial recursive functions?
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Partial Recursion in Type Theory

Coalgebras in
Type Theory

Venanzio

Capretta In Type Theory all functions are total.
How do we represent partial recursive functions?
Partiality Monad: (vc 2005

Corecursive
Equations

Colnductive
Types

codata BY : Set

Bisimulations

. 14
- —
Constructive ” -I . B B
Infinity g BI/ N Bl/
Tabulations
General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Partial Recursion in Type Theory

Coalgebras in
Type Theory

Venanzio

Capretta In Type Theory all functions are total.
How do we represent partial recursive functions?
Partiality Monad: (vc 2005

Corecursive
Equations

Colnductive
Types

codata BY : Set

Bisimulations

| -1:B— B
Constructive

Infinity g BI/ N Bl/

Tabulations

O] A partial function is represented as f : A — B".
ecursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Partial Recursion in Type Theory

Coalgebras in
Type Theory

Venanzio .

Capretta In Type Theory all functions are total.
e How do we represent partial recursive functions?
Equations

Partiality Monad: (vc 2005
Colnductive
Types

codata BY : Set

Bisimulations

| -1:B— B
Constructive

Infinity g BI/ N Bl/

Tabulations

O] A partial function is represented as f : A — B".
ecursion

f defined on a: fa= <<<---<[b].

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Partial Recursion in Type Theory

Coalgebras in
Type Theory

Venanzio .

Capretta In Type Theory all functions are total.
e How do we represent partial recursive functions?
Equations

Partiality Monad: (vc 2005
Colnductive

Types

codata BY : Set

Bisimulations

| -1:B— B
Constructive

Infinity g BI/ N Bl/

Tabulations

O] A partial function is represented as f : A — B".
ecursion

oo f defined on a: fa=<<<---<4]b].
Type Theory f undeﬁned on a. fa = Q] - .

Mixing
Induction and
Coinduction
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Different approach to partial recursive functions.sove/vc 2001]
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Bove/Capretta method

Coalgebras in
Type Theory

gl Different approach to partial recursive functions.seve/vc 2001]
A partial function f : A — B is represented by
A domain predicate and a function on the domain:

Corecursive
Equations

Colnductive

Types Dom . A — Prop
Bisimulations f: (a . A)Dom a— B
Constructive

Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Bove/Capretta method

Coalgebras in
Type Theory

gl Different approach to partial recursive functions.seve/vc 2001]
A partial function f : A — B is represented by
A domain predicate and a function on the domain:

Corecursive
Equations

Colnductive

Types Dom . A — Prop
Bisimulations f: (a . A)Dom a— B
Constructive

Infinity

Example, function that seeks a 0 in a stream:

Tabulations

General seek : SN N

Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Bove/Capretta method

Coalgebras in

e Theoy Different approach to partial recursive functions.eove ve 2001
Venanzio

Capretta A partial function f : A — B is represented by
A domain predicate and a function on the domain:

Corecursive
Equations

Colnductive Dom : A — Prop
e f:(a: A\lDoma — B

Bisimulations

Constuctive Example, function that seeks a 0 in a stream:
nfinity

Tabulation:

e seek : Sy = N

General

Recursion

data Domgeek : Sy — Prop
Non-Standard

Type Theory Seek : (S : SN)Domseek s — N
Mixing

Induction and
Coinduction
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Bove/Capretta method

Coalgebras in Different approach to partial recursive functions.sove/vc 2001]
yp ry . . .
A partial function f : A — B is represented by

Venanzio

Capretta A domain predicate and a function on the domain:
Corecursive DOm . A — PrOp
Equations

f:(a: A\Doma — B

Colnductive
Types . .
Example, function that seeks a 0 in a stream:

Bisimulations

Constructive Seek . SN — N

Infinity

Tabulations data Domseek : SN - Prop

General found : (5 . SN)Domseek (0 - 5)
Recursion

e notfound : (n: N)(s : Sy)Domgeek S — Domgeek (Sn: s)
Ty_p_e e seek : (s : Sy)Domgeek s — N
Incucton and seek (0 : s) (foundz) =0

Conductien seek (S n : s) (notfound ns h) = S (seek s h)
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Coinductive version of the domain:
trace of computation. [eve/vc 2007]
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Computation by Prophecy

Coalgebras in
Type Theory

Venanzio Coinductive version of the domain:
apretta .
trace of computation. [Bove/vc 2007)

Corecursive
Equations

. codata Tracegeek : Sy — Prop

olnductive

Trpes found : (s : Sy)Traceseek (0= s)

Bisimulations notfound : (n : N)(s : Sy)Traceseek s — Traceseek (Sn:s)

Constructive

Infinity seek : (s : Sy)Traceseek s — N
Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Computation by Prophecy

Coalgebras in
Type Theory

Venanzio Coinductive version of the domain:
Capretta

trace of computation. [sove/vc 2007)

Corecursive

e codata Tracegek : Sy — Prop

E found : (s : Sy)Traceseek (0= s)

Bisimulations notfound : (n : N)(s : Sy)Traceseek s — Traceseek (Sn:s)
e seek : (s : Sy)Traceseek s — N

Tabulations

Come] In all these representations:

Recursion How do we effectively compute the function?

e Coinductive objects don't automatically unfold.

Mixing Domain predicate must be proved.

Induction and
Coinduction
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To compute seek (7:2:5:--)

Assume the domain predicate and type-check the result:

h:Domgeek (7:2:5z---)Fseek(7:2:5:---)h:N
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Computation by Judgement Rewriting

Coalgebras in
Type Theory

Venansia To compute seek (7:2:5:--+)
Capretta Assume the domain predicate and type-check the result:

Eovadomn” h:Domgeex (7:2:5z---)Fseek(7:2:5z---)h:N
Colnductive

e Inversion: h must have the form (notfound6 (2:5:---) hy).

Rewrite the judgement:

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction
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Capretta
Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Computation by Judgement Rewriting

To compute seek (7 :2:5:

Assume the domain predicate and type-check the result:

h:Domgeek (7:2:5z:---)Fseek(7:2:5:---)h: N

Inversion: h must have the form (notfound6 (2:5:---) hy).

Rewrite the judgement:

— hi i Domgeek (2:5: -+
Fseek(7:2:5:---)(notfound6(2:5:---
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Coalgebras in
Type Theory

Venanzio

Capretta
Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Computation by Judgement Rewriting

To compute seek (7:2:5:--+)
Assume the domain predicate and type-check the result:

h:Domgeek (7:2:5z:---)Fseek(7:2:5:---)h: N

Inversion: h must have the form (notfound6 (2:5:---) hy).
Rewrite the judgement:

— hi : Domgeek (2:5:--+)

Fseek(7:2:5:---)(notfound6(2:5:---)h;): N
~>  hy:Domgeek (2:5:---)FSseek(2:5z:---) hy : N

Venanzio Capretta Coalgebras in Type Theory



Computation by Judgement Rewriting

Coalgebras in
Type Theory

Venanzio TO ComPUte seek (7 n2rhn.. )
Capretta Assume the domain predicate and type-check the result:
Eqvations. h:Domgeek (7:2:5z---)Fseek(7:2:5:z---)h:N

Colnductive

e Inversion: h must have the form (notfound6 (2:5:---) hy).

Rewrite the judgement:

Bisimulations

Constructive

Infinity
Tabulations = h1 : Domgeek (2 HC IR )

General Fseek(7:2:5:---)(notfound6(2:5:---)hy) : N
Reeursion ~>  hy :Domgeek (2:5: -+ ) Sseek(2:5:--+) hy = N
Tope Theary = hy :Domgeer (5:---) - SSseek (5:---) hp: N

Mixing

Induction and
Coinduction

Venanzio Capretta Coalgebras in Type Theory



Computation by Judgement Rewriting

Coalgebras in
Type Theory

Venansio To compute seek (7:2:5:--+)
Capretta Assume the domain predicate and type-check the result:

Eovadomn” h:Domgeex (7:2:5z---)Fseek(7:2:5z---)h:N
Colnductive
e Inversion: h must have the form (notfound6 (2:5:---) hy).

Rewrite the judgement:

Bisimulations

Constructive

Infinity

Tabulations = hl : Domseek (2 . 5 MR )

General Fseek(7:2:5:---)(notfound6(2:5:---)hy) : N
ecursion ~»  h; :Domgeek (2:5:-+-)FSseek(2:5:--+) hy : N
e Thenny —  hy:Domgeek (5:---)FSSseek(5:-++) hy: N

Mixin,

inductin and Connection with Non-Standard Type Theory [Martin-Lsf 1988]

Coinduction

Venanzio Capretta Coalgebras in Type Theory



Mixing Induction and Coinduction

Coalgebras in
Type Theory

Venanzio

Capretta
Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard NATIONAL,
Type Theory

Photograph by Chris Gray © COPYRIGHT NATIONAL GEOGRAPHIC SOCIETY. AL RIGHTS RESERVED.

Mixing
Induction and
Coinduction

o =] = =
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Mixed Inductive/Coinductive Types

Coalgebras in
Type Theory

\ée:;ztzti: Data structures W|th both [Danielsson/Altenkirch 2009]

» Constructors that must be well-founded;

Corecursive
Equations

» Constructors that can be iterated infinitely

Colnductive

Types Example, equality for the partiality monad:
Bisimulations

Constructive COdata (2) . BV — BV — Prop
Infinity

egstep : (x1,x2 : BY)x1 ~ xp — <Ix3 ™~ <Ix2
R eqval : (b: B)[b] >~ [b]
Recursion eqmixy @ (x1,x2 1 BY)x1 >~ xo — <x1 =~ xp

Non-Standard | . . v ~ — ~
S eqmix, : (x1,x2 1 BY)x1 >~ xo — x1 >~ <Ixp

Tabulations

Mixing
Induction and
Coinduction
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Capretta
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Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
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Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Mixed Inductive/Coinductive Types

Data structures W|th bOth: [Danielsson /Altenkirch 2009]
» Constructors that must be well-founded;
» Constructors that can be iterated infinitely
Example, equality for the partiality monad:
codata (~) : BY — B” — Prop

eqstep : (x1,x2 1 BY)x1 ~ xp — <x1 =~ <Ix2
equal : (x1, %0 :BY)(b:B)x1 L b—x | b— x1 ~ x

x | b inductive convergence relation
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Mixed Inductive/Coinductive Types

Coalgebras in
Type Theory

Venanzio Data structures W|th bOth: [Danielsson/Altenkirch 2009]
Capretta
» Constructors that must be well-founded;

Corecursive

R » Constructors that can be iterated infinitely
Colnductive H Al .
S Example, equality for the partiality monad:

Bisimulations data (:) : By N BV s Prop

Constructive

. o0
Infinity eqstep : (x1,x2 1 BY)x1 ~ xp — <Ix3 =~ <Ixp
Tabulations qual . (b B) |'b'| ~ |'b'|
General .
Recursion eqm|X1 . (Xl,XQ . BV)X]_ ~ Xop — QX]_ ~ Xo
Non-Standard equX2 : (X]_,Xz . BV)X]_ >~ Xop — X1 X <]X2
Type Theory
ik The oo marks arguments that need not be well-founded
nduction and
Coinduction
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Interesting topics for future research:
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Interesting topics for future research:

» Solution of corecursive equations;
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Interesting topics for future research:

» Solution of corecursive equations;

» Tabulations of functions on coinductive domains;
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Interesting topics for future research:

» Solution of corecursive equations;
» Tabulations of functions on coinductive domains;

» General recursion and non-standard type theory;
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Coalgebras in
Type Theory

Venanzio

Capretta
Corecursive
Equations

Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
Recursion

Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Conclusion

Interesting topics for future research:
» Solution of corecursive equations;
» Tabulations of functions on coinductive domains;
» General recursion and non-standard type theory;

» Mixed inductive/coinductive definitions.
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Type Theory

Venanzio

Capretta
Corecursive
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Colnductive
Types

Bisimulations

Constructive
Infinity

Tabulations

General
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Non-Standard
Type Theory
Mixing
Induction and
Coinduction

Conclusion

Interesting topics for future research:
» Solution of corecursive equations;
» Tabulations of functions on coinductive domains;
» General recursion and non-standard type theory;
» Mixed inductive/coinductive definitions.

There are many other exiting topics.
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AN cEEEmat )
Non-Standard ) eSS 4 . S .
Tz Titzelsy Mathematically Structured Functional Programming

Mg Baltimore, 25 September 2010

Coinduction http//CSIOCGE/mep/mep201O/
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