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Introduction

games arising in real life are extremely varied
a wide gamut of interactions and other dynamic
phenomena are described using game-based metaphors
many concepts, no universal meaning: move, position,
play, turn, winning condition, payoff function, strategy, . . .
Conway’s games: very elementary but structured,
sufficiently abstract notion of game
other notions of games can be encoded, e.g. automata
games
algebraic-coalgebraic methods provide a convenient
conceptual setting



Finite vs Infinite Plays

In [“On Numbers and Games”] Conway focuses mainly on
finite, i.e. terminating games. Infinite games are neglected
as ill-formed or trivial, not interesting for “busy men”;
however, especially in view of applications, potentially
infinite interactions are even more important than finite
ones.
In [CALCO’09]:

a theory of infinite games (hypergames) is studied in a
coalgebraic (coinductive) setting;
infinite plays are considered as draws;
the notion of winning strategy is replaced by that of
non-losing strategy;
the theory on hypergames extends that of Conway’s games.



Further developments

In the present talk, we will focus on:

equivalences and congruences on games and hypergames.

Most results on games and hypergames can be understood in
terms of equivalences.



Classical combinatorial games

2-player games, Left (L) and Right (R)
games have positions
L and R move in turn
perfect knowledge: all positions are public to both players
in any position there are rules which restrict L to move to
any of certain positions (Left positions), while R may
similarly move only to certain positions (Right positions)
the game ends when one of the two players does not have
any option

Many Games played on boards are combinatorial games: Nim,
Domineering, Go, Chess.



Conway Games, algebraic definition

Games are identified with initial positions.
Any position p is determined by its Left and Right options,
p = (PL,PR).

The class G of games is inductively defined by:
the empty game ({}, {}) ∈ G;
if P,P ′ ⊆ G, then (P,P ′) ∈ G.

G is the carrier of the initial algebra (G, id) of the functor
F : C → C,

F (X ) = P(X )× P(X ) F (f ) = P(f )× P(f )

C is the category of classes (of hyper(sets) or sets with
hereditarily cardinal less than κ).
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Winning Strategies for L, R, I, II

L Left Player
R Right Player
I player: the player who starts the game
II player: the player who responds to the I player

winning condition for a player: no more moves for the other
player
a winning strategy for L (R) player tells, at each step, which
is the next L (R) move, in response to any possible last
move of R (L), independently whether L (R) acts as I or II
player
a winning strategy for I (II) player tells, at each step, which
is the next move of the I (II) player, in response to any
possible last move of the II (I) player, independently
whether I (II) acts as L or R player
winning strategies are positional (history-free)
winning strategies are formalized as partial functions from
positions to moves



Combining games: Conway’s sum

On the sum game, at each step, the current player chooses one
component game and performs a move on that component

x + y = ({xL + y | xL ∈ X L} ∪ {x + yL | yL ∈ Y L},
{xR + y | xR ∈ X R} ∪ {x + yR | yR ∈ Y R}) .

Any player can change the component.
On a sum game we loose the alternation of I and II players
in the single components. This is why we need to
distinguish also between L and R player.



Equivalences and Congruences on Games

We focus on the subclass of impartial games, where L and
R have the same options.
Thus we can consider only I and II player.
Impartial games can be represented by x = X .
They form an algebra I = P(I).



Conway equivalence on surreal numbers:

x∼y iff ∀x ′ ∈ X . (y 6∼x ′) ∧ ∀y ′ ∈ Y . (y ′ 6∼x) .

Lemma: x∼y iff x + y has a winning strategy for II.

Contextual equivalence:

x≈y ⇐⇒ ∀C[ ]. C[x ] m C[y ] ,

where
x m y iff whenever there is a winning strategy for I (II) on x
there is also one on y , and vice versa.
additive contexts:

C[ ] ::= [ ] | C[ ] + x | x + C[ ]

Lemma:
i) ≈ is the greatest congruence included in m.
ii) the class of additive contexts can be simplified:

x≈y iff ∀z. x + z m y + z .

Theorem: ∼ = ≈



Grundy-Sprague Semantics

There exists a system of canonical games {∗α}α∈Ord

∗α = {∗β | β < α} (Nim games)

The Grundy function g : I → Ord associates to each impartial
game x an ordinal α such that x ≈ ∗g(x).
g is computed on the game graph using the mex (minimal
excludent) algorithm.

The Grundy semantics is
compositional w.r.t. sum
fully abstract w.r.t. ≈, i.e.: g(x) = g(y) iff x ≈ y .



A categorical representation of the equivalence: Joyal
category of games

• objects: (impartial) games

• morphisms:
f : x → y winning strategy for II on x + y ←→ x ≈ y

• identity: copy-cat strategy ←→ reflexivity

• composition:
via the swivel chair strategy (trace operator) ←→ transitivity

• + symmetric monoidal functor ←→ congruence



Hypergames and non-losing Strategies

Hypergames H are the carrier of the final coalgebra (H, id) of
the functor FC → C, FX = P(X )× P(X ).

Plays on hypergames can be non-terminating.
A non-terminating play is a draw.
The notion of winning strategy is replaced by that of non-losing
strategy.

Impartial hypergames are the carrier J of the final coalgebra of
P.
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Extending Conway’s equivalence on surreal numbers
to hypergames

It requires a simultaneous coinductive definition for defining
both relations ∼ and 6∼, as the greatest fixpoint of the monotone
operator Φ : P(H×H)×P(H×H) −→ P(H×H)×P(H×H)

Φ(R1,R2) = ({(x , y) | ∀x ′ ∈ X .yR2x ′ ∧ ∀y ′ ∈ Y .y ′R2x},
{(x , y) | ∃x ′ ∈ X .yR1x ′ ∨ ∃y ′ ∈ Y .y ′R1x})

Lemma: x∼y iff x + y has a non-losing strategy for II.

But: ∼ is not transitive.
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Contextual equivalence and extended Grundy
semantics

Contextual equivalence:

x≈y ⇐⇒ ∀C[ ]. C[x ] m C[y ] ,

where
x m y iff whenever there is a non-losing strategy for I (II) on
x there is also one on y , and vice versa.
There is a system of canonical hypergames extending
canonical games with hypergames ∗∞K , where

∗∞∅ = {∗∞∅}

∗∞K = {∗∞∅} ∪ {∗k | k ∈ K}

The Grundy semantics can be extended to hypergames
γ : J → Ord ∪ {∞K | K ⊆ Ord}

Theorem: γ is fully abstract w.r.t. ≈.



Categories of hypergames: a first try

A morhism f : x → y is a non-losing strategy for II on x + y .

This captures ∼ on hypergames, which is not transitive,
hence no closure under composition,
namely the swivel chair strategy contains an infinite play

f : x + y g : y + z
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A category of balanced strategies

To avoid infinite plays in the swivel chair strategy, we introduce
the notion of non-losing balanced strategy.

A morphism f : x → y is a non-losing balanced strategy on
x + y , i.e. a non-losing strategy not containing plays which are
definitely all in x or in y .

Non-losing balanced strategies are closed under composition
and give rise to a category.

But: which notion of equivalence (congruence) do they
capture?
Surprisingly, this is not ≈.
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But: a + b has no non-losing balanced strategy for II.



Questions

Is there a notion of strategy/category capturing ≈?
On the other perspective: what kind of contextual
equivalence is captured by the category of balanced
strategies?
Can we tell apart a and b, by extending the class of
additive contexts?

E.g. C[ ] = { }, C[x ] = {x}. Does it give a finer
equivalence? No, because the Grundy function is
compositional also w.r.t. C[ ].
We shall look for intensional contexts.

What about a different notion of sum in the category?


