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Introduction

@ games arising in real life are extremely varied

@ a wide gamut of interactions and other dynamic
phenomena are described using game-based metaphors

@ many concepts, no universal meaning: move, position,
play, turn, winning condition, payoff function, strategy, ...

@ Conway’s games: very elementary but structured,
sufficiently abstract notion of game

@ other notions of games can be encoded, e.g. automata
games

@ algebraic-coalgebraic methods provide a convenient
conceptual setting



Finite vs Infinite Plays

@ In [“On Numbers and Games”] Conway focuses mainly on
finite, i.e. terminating games. Infinite games are neglected
as ill-formed or trivial, not interesting for “busy men”;

@ however, especially in view of applications, potentially
infinite interactions are even more important than finite
ones.

@ In [CALCO’09]:

e atheory of infinite games (hypergames) is studied in a
coalgebraic (coinductive) setting;

e infinite plays are considered as draws;

e the notion of winning strategy is replaced by that of

non-losing strategy;
e the theory on hypergames extends that of Conway’s games.



Further developments

In the present talk, we will focus on:

equivalences and congruences on games and hypergames.

Most results on games and hypergames can be understood in
terms of equivalences.




Classical combinatorial games

@ 2-player games, Left (L) and Right (R)
@ games have positions
@ L and R move in turn
@ perfect knowledge: all positions are public to both players
@ in any position there are rules which restrict L to move to
any of certain positions (Left positions), while R may
similarly move only to certain positions (Right positions)
@ the game ends when one of the two players does not have
any option
Many Games played on boards are combinatorial games: Nim,
Domineering, Go, Chess.



Conway Games, algebraic definition

Games are identified with initial positions.

Any position p is determined by its Left and Right options,
p = (P, PA).

The class G of games is inductively defined by:

e the empty game ({},{}) € G;
e if P,P' C G, then (P,P) €.

G is the carrier of the initial algebra (G, id) of the functor
F:C—¢,

F(X) = P(X) x P(X) F(f)=P(f) x P(f)

C is the category of classes (of hyper(sets) or sets with
hereditarily cardinal less than k).
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Winning Strategies for L, R, 1, Il

L Left Player
R Right Player
| player: the player who starts the game
Il player: the player who responds to the | player
@ winning condition for a player: no more moves for the other
player
@ a winning strategy for L (R) player tells, at each step, which
is the next L (R) move, in response to any possible last
move of R (L), independently whether L (R) acts as | or Il
player
@ a winning strategy for | (1) player tells, at each step, which
is the next move of the I (Il) player, in response to any
possible last move of the Il (I) player, independently
whether | (1) acts as L or R player
@ winning strategies are positional (history-free)
@ winning strategies are formalized as partial functions from
positions to moves



Combining games: Conway’s sum

On the sum game, at each step, the current player chooses one

component game and performs a move on that component

x+y={x"+ylxteXJu{x+yt|ytevh,
XFrylxBeXfrux+yR|yReYh).

@ Any player can change the component.

@ On a sum game we loose the alternation of | and Il players
in the single components. This is why we need to
distinguish also between L and R player.




Equivalences and Congruences on Games

@ We focus on the subclass of impartial games, where L and
R have the same options.

@ Thus we can consider only | and Il player.
@ Impartial games can be represented by x = X.

@ They form an algebra 7 = P(Z).




@ Conway equivalence on surreal numbers:
x~y iff VX' e X. (y #xX') AVY e Y. (y #x).
Lemma: x~y iff x + y has a winning strategy for II.
@ Contextual equivalence:
x=y <= VC[]. CIx] { Clyl,

where
e x { y iff whenever there is a winning strategy for | (Il) on x
there is also one on y, and vice versa.
e additive contexts:

Cl] == [IICll+x|x+C[]

Lemma:
i) ~ is the greatest congruence included in .
ii) the class of additive contexts can be simplified:

xeyiffvz.x+zy+z.

Theorem: ~= &



Grundy-Sprague Semantics

There exists a system of canonical games {*a},corg
xa = {*0 | f < a} (Nim games)

The Grundy function g : 7 — Ord associates to each impartial
game x an ordinal « such that x ~ xg(x).

g is computed on the game graph using the mex (minimal
excludent) algorithm.

The Grundy semantics is

@ compositional w.r.t. sum
o fully abstract w.r.t. ~, i.e.: g(x) = g(y) iff x = y.




A categorical representation of the equivalence: Joyal

category of games

e objects: (impartial) games

e morphisms:
f: x — y winning strategy for Il on x + y

e identity: copy-cat strategy

e composition:
via the swivel chair strategy (trace operator)

e + symmetric monoidal functor

X~y

reflexivity

transitivity

congruence




Hypergames and non-losing Strategies

Hypergames ‘H are the carrier of the final coalgebra (H, id) of
the functor FC — C, FX = P(X) x P(X).

Plays on hypergames can be non-terminating.

A non-terminating play is a draw.

The notion of winning strategy is replaced by that of non-losing
strategy.

Impartial hypergames are the carrier J of the final coalgebra of
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Extending Conway’s equivalence on surreal numbers

to hypergames

It requires a simultaneous coinductive definition for defining
both relations ~ and %, as the greatest fixpoint of the monotone
operator ¢ : P(H x H) x P(H x H) — P(H x H) x P(H x H)

®(R1,R2) = ({(x,y) | VX" € X.yRox" N Vy' € Y.y'Rox},
{(x,y) | IX' € XyR1x" v Ty’ € Y.y'R1x})

Lemma: x~y iff x + y has a non-losing strategy for II.

But: ~ is not transitive.
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Contextual equivalence and extended Grundy

semantics

@ Contextual equivalence:
x=y <= VC[]. CIx] { C[y] ,

where
x { y iff whenever there is a non-losing strategy for | (I) on
x there is also one on y, and vice versa.

@ There is a system of canonical hypergames extending
canonical games with hypergames ook, where

xoop = {*00g}
xook = {xoop} U {xk | k € K}
@ The Grundy semantics can be extended to hypergames
v:J — OrdU{ocok | K C Ord}
Theorem: ~ is fully abstract w.r.t. ~.
e 4 4444



Categories of hypergames: a first try

A morhism f: x — y is a non-losing strategy for Il on x + y.

This captures ~ on hypergames, which is not transitive,
hence no closure under composition,
namely the swivel chair strategy contains an infinite play

f: X + y g: y + z




A category of balanced strategies

To avoid infinite plays in the swivel chair strategy, we introduce
the notion of non-losing balanced strategy.

A morphism f : x — y is a non-losing balanced strategy on
X + y, i.e. a non-losing strategy not containing plays which are
definitely all in x orin y.

Non-losing balanced strategies are closed under composition
and give rise to a category.

But: which notion of equivalence (congruence) do they
capture?
Surprisingly, this is not ~. L

y ;/\”

But: a + b has no non-losing balanced sfraffegy for Il.
e 4 4444



Questions

@ |s there a notion of strategy/category capturing ~?

@ On the other perspective: what kind of contextual
equivalence is captured by the category of balanced
strategies?

@ Can we tell apart a and b, by extending the class of
additive contexts?

e E.g. C[]={1}, C[x] = {x}. Does it give a finer
equivalence? No, because the Grundy function is
compositional also w.r.t. C[].

@ We shall look for intensional contexts.

@ What about a different notion of sum in the category?




