Algebraically Enriched Coalgebras

Filippo Bonchi⁴ Marcello Bonsangue^{1,2} Jan Rutten^{1,3} Alexandra Silva¹

¹Centrum Wiskunde en Informatica
 ²LIACS - Leiden University
 ³Radboud Universiteit Nijmegen
 ⁴INRIA Saclay - LIX, École Polytechnique

CMCS, March 2010

Algebraically Enriched Coalgebras

- A TE N - A TE N

< 6 b

Motivation

• One of the nice things about (modelling systems as) coalgebras:

The type of the system determines a canonical notion of equivalence.

- e.g bisimilarity for LTS's
- One of the not so nice things about coalgebras:

The canonical notion of equivalence is not what one wants. e.g language equivalence for LTS's

Goal of this talk: Show a way of uniformly deriving a new set of canonical equivalences from the type of the system.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

• One of the nice things about (modelling systems as) coalgebras:

The type of the system determines a canonical notion of equivalence.

e.g bisimilarity for LTS's

• One of the not so nice things about coalgebras:

The canonical notion of equivalence is not what one wants. e.g language equivalence for LTS's

Goal of this talk: Show a way of uniformly deriving a new set of canonical equivalences from the type of the system.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

イロト イポト イヨト イヨト

$$\overline{o}(Q) = egin{cases} 1 & \exists_{q \in Q} o(q) = 1 \ 0 & ext{otherwise} \end{cases} \quad \overline{t}(Q)(a) = \bigcup_{q \in Q} t(q)(a)$$

イロト イポト イヨト イヨト

< 17 ▶

S <0,t> $\int_{2^{x}(1+5)}^{A}$

크

イロト イヨト イヨト イヨト

$$\left\{ egin{array}{ll} \overline{o}(*) = 0 & & \left\{ ar{t}(*)(a) = * \ \overline{t}(s)(a) = o(s) & & \left\{ ar{t}(s)(a) = t(s)(a)
ight.
ight.
ight.$$

Alexandra Silva (CWI)

Algebraically Enriched Coalgebras

CMCS, March 2010 4 / 11

크

< ≥ > < ≥ >

∃ ► < ∃ ►</p>

< 6 b

$$\begin{cases} \overline{o}(*) = 0 \\ \overline{o}(s) = o(s) \end{cases} \quad \begin{cases} \overline{t}(*)(a) = * \\ \overline{t}(s)(a) = t(s)(a) \end{cases}$$

How do we study PA wrt language equivalence?

$$L_s = \llbracket i(s) \rrbracket$$

글 🕨 🖌 글

3 > 4 3

How do we study WA wrt weighted languages (linear bisimilarity)?

$$L_s = \llbracket e(s) \rrbracket$$

How do we capture all the examples (and more) in the same framework?

How do we capture all the examples (and more) in the same framework?

The state space was *enriched* : T monad (P, 1+, ...).

∃ ► < ∃ ►</p>

How do we capture all the examples (and more) in the same framework? $X \longrightarrow T(X)$

The state space was *enriched* : T monad (\mathcal{P} , 1+, ...). Transform an *FT*-coalgebra (X,f) into an *F*-coalgebra (T(X), f^{\sharp}).

A B F A B F

< 6 b

How do we capture all the examples (and more) in the same framework? $X \longrightarrow T(X) \longrightarrow \Omega$

The state space was *enriched* : T monad (\mathcal{P} , 1+, ...). Transform an *FT*-coalgebra (X,f) into an *F*-coalgebra (T(X), f^{\sharp}). If *F* has final coalgebra: $x_1 \approx_F^T x_2 \Leftrightarrow \llbracket \eta_X(x_1) \rrbracket = \llbracket \eta_X(x_2) \rrbracket$.

E N 4 E N

In a nutshell...

Ingredients:

- A monad *T*;
- A final coalgebra for F (for instance, take F to be bounded);
- An extension f^{\sharp} of f;

글 🕨 🖌 글

In a nutshell...

Ingredients:

- A monad T;
- A final coalgebra for F (for instance, take F to be bounded);
- An extension f^{\sharp} of f; We can require FT(X) to be a *T*-algebra: $(FT(X), h: T(FT(X)) \rightarrow FT(X))$

$$f^{\sharp} \colon T(X) \xrightarrow{T(f)} T(F(T(X))) \xrightarrow{h} F(T(X))$$

3 + 4 = +

4 A N

Bisimilarity implies *T*-enriched bisimilarity

Theorem $\sim_{FT} \Rightarrow \approx_{F}^{T}$

э

<ロ> <問> <問> < 回> < 回> 、

Bisimilarity implies *T*-enriched bisimilarity

Theorem

$$\sim_{FT} \Rightarrow \approx_F^T$$

The above theorem instantiates to well known facts:

- for NDA (F(X) = 2 × X^A, T = P) that bisimilarity implies language equivalence;
- for PA (F(X) = 2 × X^A, T = 1 + -) that equivalences of pair of languages, consisting of defined paths and accepted words, implies equivalence of accepted words;
- for weighted automata (*F*(*X*) = ℝ × *X^A*, *T* = ℝ_ω[−]) that weighted bisimilarity implies weighted language equivalence.

- Partial Mealy machines $S \to (B \times (1+S))^A$;
- Automata with exceptions $S \rightarrow 2 \times (E+S)^A$;
- Automata with side effects $S \to E^E \times ((E \times S)^E)^A$;
- Total subsequential transducers $S \rightarrow O^* \times (O^* \times S)^A$;
- Probabilistic automata $S \to [0, 1] \times (\mathcal{D}_{\omega}(X))^{A}$;

• . . .

A THE A THE

< 6 b

- Lifted *powerset construction* to the more general framework of *FT*-coalgebras;
- Uniform treatment of several types of automata, recovery of known constructions/results;
- Opens the door to the study of *T*-enriched equivalences for many types of automata.

Thanks!!

- Lifted *powerset construction* to the more general framework of *FT*-coalgebras;
- Uniform treatment of several types of automata, recovery of known constructions/results;
- Opens the door to the study of *T*-enriched equivalences for many types of automata.

Thanks!!

Some examples do not fit their framework (e.g., interactive output monad is not commutative, side-effect monad has no ⊥,...); some of our examples might not fit our framework (?);

If
$$FT \cong TG$$
 (e.g $2 \times \mathcal{P}(-)^A \cong \mathcal{P}(1 + A \times -)$) then:

$$x \sim_{tr} y \iff x \approx_{F}^{T} y$$

If $\rho: TG \Rightarrow FT$ then:

$$x \sim_{tr} y \Rightarrow x \approx_F^T y$$

B N A B N