Algebraically Enriched Coalgebras

Filippo Bonchi ${ }^{4}$ Marcello Bonsangue ${ }^{1,2}$ Jan Rutten ${ }^{1,3}$ Alexandra Silva ${ }^{1}$

${ }^{1}$ Centrum Wiskunde en Informatica
${ }^{2}$ LIACS - Leiden University
${ }^{3}$ Radboud Universiteit Nijmegen
${ }^{4}$ INRIA Saclay - LIX, École Polytechnique

CMCS, March 2010

Motivation

- One of the nice things about (modelling systems as) coalgebras:

The type of the system determines a canonical notion of equivalence.
e.g bisimilarity for LTS's

- One of the not so nice things about coalgebras:

The canonical notion of equivalence is not what one wants.
e.g language equivalence for LTS's

Goal of this talk: Show a way of uniformly deriving a new set of canonical equivalences from the type of the system.

Motivation

- One of the nice things about (modelling systems as) coalgebras:

The type of the system determines a canonical notion of equivalence.
e.g bisimilarity for LTS's

- One of the not so nice things about coalgebras:

The canonical notion of equivalence is not what one wants.
e.g language equivalence for LTS's

Goal of this talk: Show a way of uniformly deriving a new set of canonical equivalences from the type of the system.

Example I: Determinizing (coalgebraically)

$$
\left.\right|_{\langle<0, t\rangle} ^{S}
$$

Example I: Determinizing (coalgebraically)

$$
\bar{o}(Q)=\left\{\begin{array}{ll}
1 & \exists_{q \in Q} O(q)=1 \\
0 & \text { otherwise }
\end{array} \quad \bar{t}(Q)(a)=\bigcup_{q \in Q} t(q)(a)\right.
$$

Example I: Determinizing (coalgebraically)

$$
\bar{o}(Q)=\left\{\begin{array}{ll}
1 & \exists_{q \in Q} O(q)=1 \\
0 & \text { otherwise }
\end{array} \quad \bar{t}(Q)(a)=\bigcup_{q \in Q} t(q)(a)\right.
$$

Example I: Determinizing (coalgebraically)

$$
\bar{o}(Q)=\left\{\begin{array}{ll}
1 & \exists_{q \in Q} O(q)=1 \\
0 & \text { otherwise }
\end{array} \quad \bar{t}(Q)(a)=\bigcup_{q \in Q} t(q)(a)\right.
$$

How do we study NDA wrt language equivalence?

$$
L_{s}=\llbracket\{s\} \rrbracket
$$

Example II: Totalizing

Example II: Totalizing

$$
\begin{gathered}
S \\
\{0, t\rangle \\
\left\{\begin{array} { l }
{ \overline { o } (*) = 0 } \\
{ \overline { O } (s) = o (s) }
\end{array} \quad \left\{\begin{array}{l}
\bar{t}(*)(a)=* \\
\bar{t}(s)(a)=t(s)(a)
\end{array}\right.\right.
\end{gathered}
$$

Example II: Totalizing

$$
\left\{\begin{array} { l }
{ \overline { o } (*) = 0 } \\
{ \overline { o } (s) = o (s) }
\end{array} \quad \left\{\begin{array}{l}
\bar{t}(*)(a)=* \\
\bar{t}(s)(a)=t(s)(a)
\end{array}\right.\right.
$$

Example II: Totalizing

$$
\left\{\begin{array} { l }
{ \overline { o } (*) = 0 } \\
{ \overline { o } (s) = o (s) }
\end{array} \quad \left\{\begin{array}{l}
\bar{t}(*)(a)=* \\
\bar{t}(s)(a)=t(s)(a)
\end{array}\right.\right.
$$

How do we study PA wrt language equivalence?

$$
L_{s}=\llbracket i(s) \rrbracket
$$

Example III: Linearization

Example III: Linearization

$\mathbb{R} \times\left(\mathbb{R}_{\omega}^{S}\right)^{A}$

$$
o^{\sharp}\left(\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)\right)=\sum v_{i} \times o\left(s_{i}\right) \quad t^{\sharp}\left(\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)\right)(a)\left(s_{j}\right)=\sum v_{i} \times t\left(s_{i}\right)(a)\left(s_{j}\right)
$$

Example III: Linearization

$$
\begin{aligned}
& o^{\sharp}\left(\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)\right)=\sum v_{i} \times o\left(s_{i}\right) \quad t^{\sharp}\left(\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)\right)(a)\left(s_{j}\right)=\sum v_{i} \times t\left(s_{i}\right)(a)\left(s_{j}\right)
\end{aligned}
$$

Example III: Linearization

$o^{\sharp}\left(\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)\right)=\sum v_{i} \times o\left(s_{i}\right)$ $\left.t^{\sharp}\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)\right)(a)\left(s_{j}\right)=\sum v_{i} \times t\left(s_{i}\right)(a)\left(s_{j}\right)$
How do we study WA wrt weighted languages (linear bisimilarity)?

$$
L_{s}=\llbracket e(s) \rrbracket
$$

Chasing the pattern...

How do we capture all the examples (and more) in the same framework?

Chasing the pattern...

How do we capture all the examples (and more) in the same framework?

The state space was enriched : T monad ($\mathcal{P}, 1+, \ldots$).

Chasing the pattern...

How do we capture all the examples (and more) in the same framework?

The state space was enriched: T monad ($\mathcal{P}, 1+, \ldots$). Transform an $F T$-coalgebra (X,f) into an F-coalgebra $\left(T(X), f^{\sharp}\right)$.

Chasing the pattern...

How do we capture all the examples (and more) in the same framework?

The state space was enriched: T monad ($\mathcal{P}, 1+, \ldots$). Transform an $F T$-coalgebra (X, f) into an F-coalgebra $\left(T(X), f^{\sharp}\right)$. If F has final coalgebra: $x_{1} \approx_{F}^{T} x_{2} \Leftrightarrow \llbracket \eta_{X}\left(x_{1}\right) \rrbracket=\llbracket \eta_{X}\left(x_{2}\right) \rrbracket$.

In a nutshell. . .

Ingredients:

- A monad T;
- A final coalgebra for F (for instance, take F to be bounded);
- An extension f^{\sharp} of f;

In a nutshell. . .

Ingredients:

- A monad T;
- A final coalgebra for F (for instance, take F to be bounded);
- An extension f^{\sharp} of f; We can require $F T(X)$ to be a T-algebra: $(F T(X), h: T(F T(X)) \rightarrow F T(X))$

$$
f^{\sharp}: T(X) \xrightarrow{T(f)} T(F(T(X))) \xrightarrow{h} F(T(X))
$$

Bisimilarity implies T-enriched bisimilarity

Theorem

$$
\sim_{F T} \Rightarrow \approx_{F}^{T}
$$

Bisimilarity implies T-enriched bisimilarity

Theorem

$$
\sim_{F T} \Rightarrow \approx_{F}^{T}
$$

The above theorem instantiates to well known facts:

- for NDA $\left(F(X)=2 \times X^{A}, T=\mathcal{P}\right)$ that bisimilarity implies language equivalence;
- for PA $\left(F(X)=2 \times X^{A}, T=1+-\right)$ that equivalences of pair of languages, consisting of defined paths and accepted words, implies equivalence of accepted words;
- for weighted automata $\left(F(X)=\mathbb{R} \times X^{A}, T=\mathbb{R}_{\omega}^{-}\right)$that weighted bisimilarity implies weighted language equivalence.

Examples, Examples, Examples,...

- Partial Mealy machines $S \rightarrow(B \times(1+S))^{A}$;
- Automata with exceptions $S \rightarrow 2 \times(E+S)^{A}$;
- Automata with side effects $S \rightarrow E^{E} \times\left((E \times S)^{E}\right)^{A}$;
- Total subsequential transducers $S \rightarrow O^{*} \times\left(O^{*} \times S\right)^{A}$;
- Probabilistic automata $S \rightarrow[0,1] \times\left(\mathcal{D}_{\omega}(X)\right)^{A}$;

Conclusions

- Lifted powerset construction to the more general framework of FT-coalgebras;
- Uniform treatment of several types of automata, recovery of known constructions/results;
- Opens the door to the study of T-enriched equivalences for many types of automata.
Thanks!!

Conclusions

- Lifted powerset construction to the more general framework of FT-coalgebras;
- Uniform treatment of several types of automata, recovery of known constructions/results;
- Opens the door to the study of T-enriched equivalences for many types of automata.

Thanks!!

The relation with [HJS]

(1) Some examples do not fit their framework (e.g., interactive output monad is not commutative, side-effect monad has no \perp, \ldots); some of our examples might not fit our framework (?);
(2) If $F T \cong T G\left(e . g 2 \times \mathcal{P}(-)^{A} \cong \mathcal{P}(1+A \times-)\right)$ then:

$$
x \sim_{t r} y \Longleftrightarrow x \approx_{F}^{T} y
$$

If $\rho: T G \Rightarrow F T$ then:

$$
x \sim_{t r} y \Rightarrow x \approx_{F}^{T} y
$$

