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Abstract definitions of logic

Abstract Logic as a consequence relation

A = 〈A,"A〉,

where "A: P(A)× A is a consequence relation in A.

Abstract Logic as a closure operator

A = 〈A,CA〉,

where CA is a closure operator, i.e., a mapping CA : P(A) → P(A) such for that
for all X ,Y ⊆ A,

1 X ⊆ CA(X );

2 X ⊆ Y ⇒ CA(X ) ⊆ CA(Y );

3 CA(CA(X )) = CA(X ).
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Abstract definitions of logic

Abstract Logic as a closure system

A = 〈A, TA〉

where TA is a closure system on A, i.e., a family F of subsets of A closed
under arbitrary intersections (here we consider

⋂
∅ = A).

Theorem
Let A be a set. For each closure operator CA in A we can associate a
closure system TA and, conversely, for each closure system TA a closure
operator CA in such way that they are mutually inverses of one another:

CA (→ TA := {X ⊆ A|CA(X ) = X}
TA (→ CA(X ) :=

⋂
{T ∈ TA|X ⊆ T}
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Logics as coalgebras

Palmigiano shows in [Pal02]

that an abstract logic can be represented by a coalgebra

these coalgebras maps a formula into the set of its theories;

the morphisms on that category correspond exactly to the usual
morphisms between logics.

the class of coalgebras that corresponds to abstract logics of empty
signature defines a covariety.
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Logics as coalgebras

closure system (contravariant) functor: is the functor that maps a set in the set
of the closure systems over it and, each function f : A → B, in the map

C(f ) : C(B) → C(A)
F (→ {f −1[T ] : T ∈ F}.

Let A = 〈A, TA〉.

A

ξ

!!

a!

!!
C(A) ξ(a) = {T ∈ TA|a ∈ T}

Coalg(C): A

ξ

!!

f "" B

η

!!
C(A) C(B)

C(f )##

Fact [Pal02]

f is a logical morphism between two abstract logics iff it is a morphism between
its underlying coalgebras.
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Logical interpretation on software development

We introduced in [MMB09a, MMB09b, MMB10] a formalization of
refinement on algebraic specifications based on logical interpretations;

The formalization is suitable to deal with data encapsulation,
decomposition of operations in atomic transactions, and on the reuse
of specifications;

Aims
The work aims to frame logical interpretation on the “logics as
coalgebras” perspective;

formalize refinement via interpretation on this setting;
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Refinement by interpretation [MMB09a, MMB09b]

Interpretation

τ : Fm(Σ) → P(Fm(Σ′)) interprets SP if there is a specification SP ′ under Σ′

such that:

∀ϕ ∈ Fm(Sig(SP)),SP |= ϕ iff SP ′ |= τ(ϕ)

SP ′ is a refinement by the interpretation τ of SP if

τ interprets SP

∀ϕ ∈ Fm(Sig(SP)),SP |= ϕ implies SP ′ |= τ(ϕ)

Theorem (Characterization)

SP ⇁τ SP ′ if there is an interpretation SP0 of SP such that SP0 ! SP ′.
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Strict refinement revisited
Definition

Let A = 〈A,CA〉 and A′ = 〈A,CA′〉 be two abstract logics. A ! A′, if for
any X ∪ {x} ∈ A, x ∈ CA(X ) ⇒ x ∈ CA′(X ).

Theorem

A ! A′ iff TA′ ⊆ TA.

First intuition

A
! " i ""

ξ
!!

A

ξ′

!!
C(A) C(A)

C(i)
##

However, this implies that TA′ = TA and we just need the first inclusion!
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Definition (Forward morphism)

A forward morphism between 〈A, α〉 and 〈B, β〉 with respect to a pre-order ,, is a
map h : A → B such that Ch ◦ β ◦ h , α.

Theorem
A′ is a strict refinement of A iff the inclusion map is a forward morphism from
〈A, ξ〉 to 〈A, ξ′〉 wrt ⊆.

Theorem
The tuple 〈Log, ref, i , ◦〉, where

Log is the class of C-coalgebras induced by abstract logics;

ref is the class of its inclusion forward morphisms wrt ⊆;

i is the class of identical maps;

◦ is the composition of functions,
defines a category.
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Relating logics: Morphisms & Interpretations

Definition (Logical morphism)

A logical morphism between the logics A = 〈A, TA〉 and B = 〈B, TB〉
consists of an (algebraic) morphism h : A → B such that

{h−1[T ′]|T ′ ∈ TB} = TA.

Definition (Interpretation)

Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics. A multifunction
f : A ⇒ B is an interpretation (f : A ⇒ B for short), if for any
{x} ∪ X ⊆ A,

x ∈ CA(X ) ⇔ f (x) ⊆ CB(f [X ]).
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Some preliminaries

Let f : A ⇒ B be a multifunction

image: f [X ] =
⋃
{f (a)|a ∈ X};

inverse image: f −1[Y ] = {a ∈ A|f (a) ⊆ Y }

Let A = 〈A,CA〉 and B = 〈B,CB〉 two abstract logics. The multifunction
f : A ⇒ B is said to be

continuous wrt A and B if for every X ⊆ A, f [CA(X )] ⊆ CB(f [X ])

closed if maps closed set wrt A in closed sets wrt B;
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The category of logics and interpretations

Definition (Interpretation)

Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics. A multifunction
f : A ⇒ B is an interpretation, if for any {x} ∪ X ⊆ A,

x ∈ CA(X ) ⇔ f (x) ⊆ CB(f [X ]).

Lemma

f is an interpretation iff for any X ⊆ A, CA(X ) = f −1[CB(f [X ])].

Lemma

Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics and f : A ⇒ B a
closed and continuous multifunction wrt A and B. TFAE:

1 f is an interpretation from A into B;

2 for any closed set T wrt A, T = f −1[CB(f [T ])].
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The category of logics and interpretations

Theorem

The tuple 〈Log, Int, i , ◦〉, where

Log is the class of abstract logics;

Int is the class of its interpretations;

i is the class of identical maps (for each abstract logic 〈A,CA〉 the
identical map iA : A ⇒ A);

◦ is the composition of multifunctions,

defines a category.
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Logic induced by the Frege relation

The abstract logic co-induced by f and A in B is defined as the abstract
logic B = 〈B,Cf 〉, where Cf is such that ThB = {T |f −1[T ] ∈ ThA}

Frege relation:∼A= {〈a, b〉 ∈ A2|CA(a) = CA(b)};
Canonical epimorphism e : A ⇒ A/ ∼, such e∼(a) = [a]∼.

A∼ := 〈A/ ∼,Ce∼〉;
Lemma

For any abstract logic A = 〈A,CA〉, the multifunction e : A ⇒ A∼ is an
interpretation from A to A∼.

Theorem

Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics. Then there
exists an interpretation f : A ⇒ B iff there exists an interpretation
f ∗ : A∼ ⇒ B∼.
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Frame interpretation on the coalgebraic view

For A = 〈A, TA〉:
In [Pal02]: a!

η
!!

η(a) = {T ∈ TA|a ∈ T}

Our aim: X!

ξ
!!

ξ(X ) = {T ∈ TA|X ⊆ T}
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Frame interpretation on the coalgebraic view
Category Pw
Let Pw be the category with

Obj(Pw) = {P(X )|X ∈ Obj(Set)};

Arrow(Pw) are the functions between Pw objects.

C̄ : Pw → Pw

C̄(X ) := {S ⊆ X |S is a closure system}

C̄(f ) : C̄(B) → C̄(A)
F (→ {f −1[T ] : T ∈ F}.

Power-function
A multifunction f : A ⇒ B induces a function

f ∗ : P(A) → P(B)
X (→

⋃
x∈X f (x).
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Theorem
Let A = 〈A, TA〉 and B = 〈B, TB〉 be two abstract logics and f : A ⇒ B an
interpretation. Then, TA = {f −1[T ] : T ∈ TB}.

Corollary

Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics and 〈A, ξ〉, 〈B, η〉 the
coalgebras induced by them. Hence, if f : A ⇒ B is an interpretation, then f ∗ is a
coalgebraic morphism between its logics, i.e., f ∗ makes the following diagram to
commute:

A
f ∗ ""

ξ

!!

B

η

!!
C̄A C̄B

C̄(f ∗)##

Theorem
Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics and f : A ⇒ B a closed
and continuous multifunction. Then, T A = {f −1[T ] : T ∈ T B} implies that f is
an interpretation.
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Theorem
Let A = 〈A, TA〉 and B = 〈B, TB〉 be two abstract logics and f : A ⇒ B an
interpretation. Then, TA = {f −1[T ] : T ∈ TB}.

Corollary

Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics and 〈A, ξ〉, 〈B, η〉 the
coalgebras induced by them. Hence, if f : A ⇒ B is an interpretation, then f ∗ is a
coalgebraic morphism between its logics, i.e., f ∗ makes the following diagram to
commute:

A
f ∗ ""

ξ

!!

B

η

!!
C̄A C̄B

C̄(f ∗)##

Theorem
Let A = 〈A,CA〉 and B = 〈B,CB〉 be two abstract logics and f : A ⇒ B a closed
and continuous multifunction. Then, T A = {f −1[T ] : T ∈ T B} implies that f is
an interpretation.
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Strict refinement

Theorem (Characterization)

SP ⇁τ SP ′ if there is an interpretation SP0 of SP such that SP0 ! SP ′.

Strict refinements on Pw

A

⊇

! " i ""

ξ
!!

A

η
!!

C(A) C(A)
C(i)

##

corresponds to A

⊇

! " i∗ ""

ξ′

!!

A

η′

!!

C̄(A) C̄(A)
C(i∗)

##

for A = P(A)
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Refinement via interpretation

Theorem (Characterization)

SP ⇁τ SP ′ if there is an interpretation SP0 of SP such that SP0 ! SP ′.

A
int′ ""

SP
!!

. . . int "" B
ref ""

⊇
!!

. . .

⊇

ref ′ "" B

SP′

!!

C̄A . . .
C̄(int′)
## C̄BC̄(int)

## . . .
C̄(ref )
## C̄BC̄(ref ′)

##
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Conclusions
We generalize the coalgebraic perspective of logics presented in
[Pal02], capturing the interpretations of logics with coalgebraic
morphisms ;

taking this approach, we present an elegant formalization of the
refinement via interpretation concept;

Directions to pursue

An interpretation entails the existence of a bisimilation; what is the
logical counterpart to the existence of 〈ξ, η〉-bisimilation?

! rephrase this work in the relational setting.

explore in the “logics as coalgebras” perspective
! finitarity: C (X ) = {C (Y ) : Y ⊆ X ,Y finite}
! structurality: by considering the algebraic structure on underlying sets

of the logics.
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