

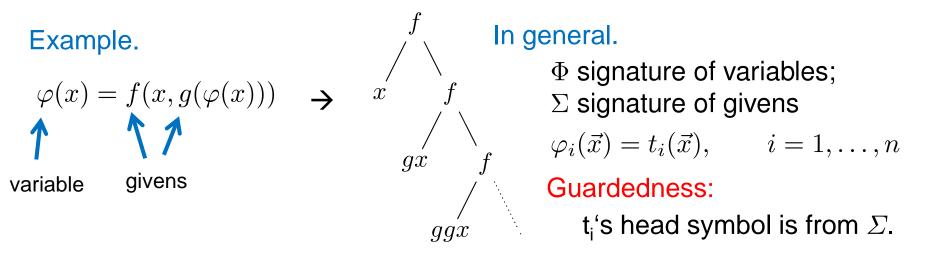
Institut für Theoretische Informatik Technische Universität Carolo-Wilhelmina zu Braunschweig

Recursive Program Schemes and Context-Free Monads

Jiří Adámek Stefan Milius Jiří Velebil

mail@stefan-milius.eu

Algebraic Trees of B. Courcelle = all solutions of recursive program schemes



Theorem. Every guarded recursive program scheme has a unique solution.

Context-Free (= algebraic) trees: 1) form an iterative algebraic theory. 2) are closed under 2nd-order substitution.

This talk: Construction of a "context-free" monad for every endofunctor.

TU Braunschweig

Background & History

- Infinite Trees & Algebraic Semantics: B. Courcelle (1983), I. Guessarian (1981)
 - General Algebra: Signatures, Sets, Trees
- E. Badouel (1989): Infinite Trees form a monad.

Coalgebraic Approach:

- L. Moss: Parametric Corecursion, TCS 2001.
- N. Ghani et al (CMCS 2001), P. Aczel + AV (CMCS 2001)
- P. Aczel + AMV: Infinite Trees a Coalgebraic View (TCS 2003)
- AMV: Iterative Algebras & Rational Trees (CMCS'04)
- Ghani et al: Solving Algebraic Equations using Coalgebra (TIAA 2003)
- L. Moss & M: The category theoretic solution of recursive program schemes

Here: apply ideas from these.

Outline

- Infinite Trees Coalgebraically
- Rational Trees Coalgebraically
- Context-Free Trees Coalgebraically

Institut für Theoretische Informatik TU Braunschweig	Infinite Trees Coalgebr		raically
	et Signature	\rightarrow \rightarrow	category \mathcal{A} with + $H: \mathcal{A} \rightarrow \mathcal{A}$
	$\Sigma_{\Sigma} X = $ all Σ -trees on X	\rightarrow	e.g. $H_{\Sigma}X = \coprod_{n \in \mathbb{N}} \Sigma_n \times X^n$ final coalgebra for $H(-) + X$

Assumption. $\forall X \in |\mathcal{A}| \exists TX$ final coalgebra for H(-) + X

Theorem. 1. $TX \cong HTX + X$ (Lambek's Lemma)

variables and non-variables separated nicely

2. $T \cong HT + Id$ is an ideal monad.

3. T is the free completely iterative monad on H

• unique solutions of 1st-order recursive eqns

Institut für Rational Trees Coalgebraically TU Braunschweig scription of regular trees. E.g. $\Sigma = \{*, c\}$ \vdots c regular x_1 Abstract description of regular trees. Goal: Assumption. A locally finitely presentable category, $H: \mathcal{A} \to \mathcal{A}$ finitary Construction. $X \xrightarrow{e} HX + A$ $EQ_A: \qquad h \downarrow \qquad \downarrow Hh+A \qquad \stackrel{Eq_A}{\longmapsto} \qquad \downarrow h \qquad RA \stackrel{def}{=} \operatorname{colim} (EQ_A \xrightarrow{Eq_A} A)$ finitely $Y \xrightarrow{f} HY + A \qquad Y$ presentable Theorem. 1. $RA \cong HRA + A$,

2. $R \cong HR + Id$ is an ideal monad,

3. R is the free iterative monad on H.

TU Braunschweig

Alternative & Examples

Equivalently: $\mathcal{A} = Set$

Definition. $X \xrightarrow{c} HX$ locally finite $: \iff \forall x \in X. \langle x \rangle \subseteq X$ finite

Theorem. 1. $R\emptyset$ is the final locally finite coalgebra for H.

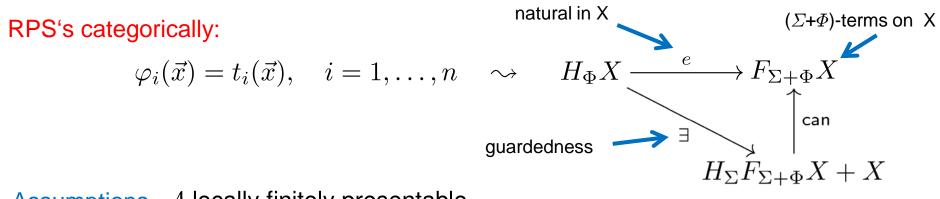
2. Similarly for arbitrary lfp categories \mathcal{A} .

Examples.
$$\mathcal{A} = \mathsf{Set}$$
 $HX = \{0,1\} \times X^A$ $R\emptyset$ $HX = H_{\Sigma}X = \prod_{n \in \mathbb{N}} \Sigma_n \times X^n$ RX $HX = \{\{x,y\} \mid x,y \in X\}$ RX $HX = \mathbb{R} \times X$ $R\emptyset$ $\mathcal{A} = \mathsf{Vec}_{\mathbb{R}}$ $HX = \mathbb{R} \times X$ $R0$ $\mathcal{A} = \mathsf{Set}^{\mathcal{F}}$ $HX = X \times X + \delta X$ RV

- $R\emptyset = regular languages$
- $X = rational \Sigma$ -trees on X
- X = rat. unord. bin. trees on X
 - = eventually periodic streams
- R0 = all rational streams

 $RV = \operatorname{rational} \lambda \operatorname{-trees} \operatorname{up} \operatorname{to} \alpha \operatorname{-eq}.$ $V: \mathcal{F} \to \operatorname{Set} \quad V(\Gamma) = \Gamma \qquad {}_{\operatorname{CMCS, March 26-28, 2010, p. 7}}$

Recursive Program Schemes



Assumptions. A locally finitely presentable

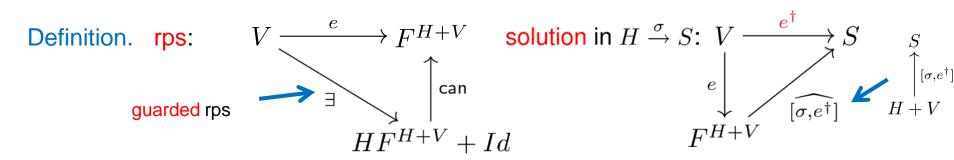
Institut für

TU Braunschweig

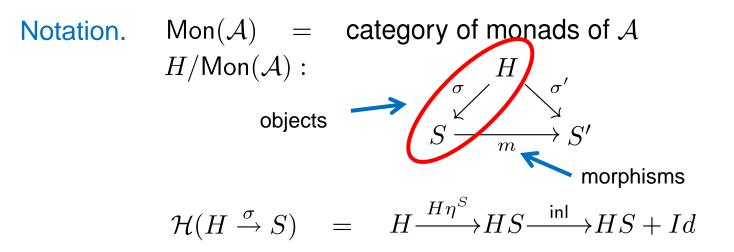
coproduct injections are monos and monos closed under +

$$V, H, \ldots : \mathcal{A} \to \mathcal{A}$$
 finitary

 $\rightsquigarrow F^{H+V}$ free monad $H \xrightarrow{\kappa} T$ free completely iterative monad on H

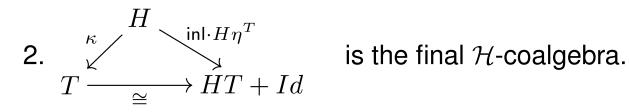


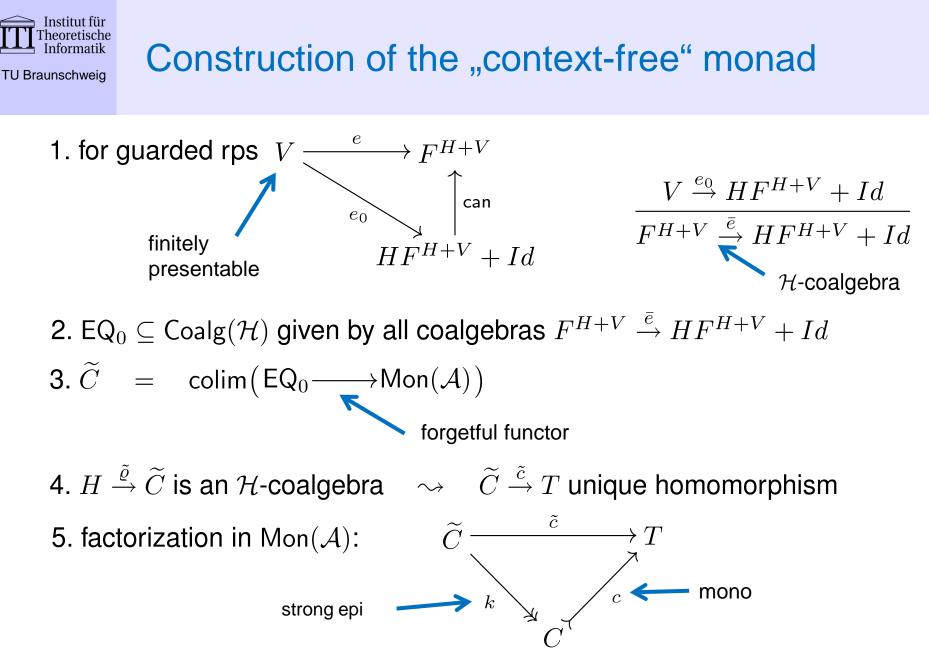
Theorem. Every guarded rps has a unique solution in (T, κ) . (based on Ghani et al)



Theorem. (Ghani et al)

1. \mathcal{H} is an endofunctor of $H/Mon(\mathcal{A})$.





Observation. C is countably accessible.

Theorem.

- $\varrho = \left(\begin{array}{c} H \xrightarrow{\tilde{\varrho}} \tilde{C} \xrightarrow{k} C \end{array} \right)$
- 1. Every guarded recursive program scheme has a unique solution in (C, ϱ) .
- **2**. $C \cong HC + Id$ is an ideal monad.
- 3. For $\mathcal{A} = \mathsf{Set}, H = H_{\Sigma}$ we have:

$$CX =$$
all context-free Σ -trees on X .

- Context-free trees are precisely the solutions of rps's.
- All infinite trees are captured by the free completely iterative monad T.
- All rational trees are captured by the rational monad R.
- Context-free trees are captured by the context-free monad C.

- Is C an iterative monad in the sense of Calvin Elgot?
- Closedness under 2nd-order substitution?
- Universal property of the context-free monad?
- Further examples.