Coalgebras and Modal Logics: an Overview

Dirk Pattinson, Imperial College London

CMCS 2010, Paphos, Cyprus

Part I: Examples

or:

Why should I care?

A Cook's Tour Through Modal Semantics

Neighbourhood Frames.

$$C \to \mathcal{PP}(C) = \mathcal{N}(C)$$

mapping each world $c \in C$ to a set of neighbourhoods

Game Frames over a set N of agents

$$C \to \{ ((S_n)_{n \in N}, f) \mid f : \prod_n S_n \to C \} = \mathcal{G}(C)$$

associating to each state $c \in C$ a *strategic game* with strategy sets S_n and outcome function f

Conditional Frames.

$$C \to \{f : \mathcal{P}(C) \to \mathcal{P}(C) \mid f \text{ a function}\} = \mathcal{C}(C)$$

where every state yields a *selection function* that assigns properties to conditions

Coalgebras and Modalites: A Non-Definition

Coalgebras are about *successors*. *T*-coalgebras are pairs (C, γ) where

 $\gamma: C \to TC$

maps states to successors. Write Coalg(T) for the collection of T-coalgebras.

states = elements $c \in C$	properties of states = subsets $A \subseteq C$
successors = elements $\gamma(c) \in TC$	properties of successors = subsets $\heartsuit{A} \subseteq TC$

Modal Operators are about *properties* of successors, so

$$\frac{\llbracket \phi_1 \rrbracket, \dots, \llbracket \phi_n \rrbracket \subseteq C}{\llbracket \heartsuit(\phi_1, \dots, \phi_n) \rrbracket \subseteq TC}$$

with the intended interpretation $c \models \heartsuit(\phi_1, \ldots, \phi_n)$ iff $\gamma(c) \in \llbracket \heartsuit \phi_1, \ldots, \phi_n \rrbracket$.

Part II: Approaches to Syntax and Semantics

or:

What's a modal operator?

Moss' Coalgebraic Logic: The Synthetic Approach

Idea. \heartsuit reflects the action of T on sets: 'import' semantics into syntax

Concrete Syntax

Abstract Syntax:

$$\frac{\Phi \subseteq_f L}{\bigwedge \Phi \in L} \quad \frac{\phi \in L}{\neg \phi \in L} \quad \frac{\Phi \in T_\omega L}{\nabla \Phi \in L}$$

$$L \cong F(L) = \mathcal{P}_f(L) + L + T_{\omega}(L)$$

Modal Semantics

Algebraic Semantics

relative to $T\text{-coalgebra}\left(C,\gamma:C\rightarrow TC\right)$ where T_{ω} is the finitary part of T

Relation Lifting: from *states* to *successors*

Formal Definition. (Assume T preserves weak pullbacks to make things work)

$$\overline{T}R = \{(T\pi_1(w), T\pi_2(w)) \mid w \in TR\} \subseteq TX \times TY$$

Modal Semantics. Assume that \models is already given for 'ingredients' of $\alpha \in TL$

$$c \models \nabla \alpha \iff (\gamma(c), \alpha) \in \overline{T}(\models)$$

for $c \in C$ and $(C, \gamma : C \to TC) \in \mathsf{Coalg}(T)$.

Thm. [Moss, 1999] L has the Hennessy-Milner Property.

Example: Coalgebraic Logic of Multigraphs

Modal Operators for $\mathcal{B}X = \{f : X \to \mathbb{N} \mid \operatorname{supp}(f) \text{ finite}\}$ $\frac{\alpha : L \to \mathbb{N} \text{ and } \operatorname{supp}(\alpha) \text{ finite}}{\nabla \alpha \in L}$

Satisfaction. $c \models \nabla \alpha \iff (\gamma(c), \alpha) \in T(\models) \iff$ the 'magic square'

	x_1	x_2	•••	x_k	\sum
ϕ_1					w_1
:					
ϕ_n					w_n
Σ	m_1	m_2	• • •	m_n	

• $m_j = \gamma(c)(x_j)$ is multiplicity of x_j

•
$$w_i = lpha(\phi_i)$$
 is weight of ϕ_i

• x/ϕ -entry is 0 if $x \not\models \phi$

can be filled according to the rules on the right.

Syntax as initial algebra. $L \cong \mathcal{P}_f(L) + LT(L)$

Semantics as algebra morphism

where $\rho_C: T\mathcal{P}(C) \to \mathcal{P}(TC)$ is '*lifted membership*', i.e.

$$\rho_C(\Phi) = \{ t \in TC \mid (t, \Phi) \in \overline{T}(\epsilon) \}$$

where $\epsilon_C \subseteq C \times \mathcal{P}(C)$ is membership (for $T = \mathcal{B}$ a 'magic square' problem)

Logics via Liftings: The Organic Approach

Idea. take \heartsuit what we want it to mean: grow your own modalities

T-Structures then define the semantics of modalities: they assign a *nbhd frame translation* or, equivalently, a *predicate lifting*

 $\llbracket \heartsuit \rrbracket : TC \to \mathcal{P}(\mathcal{P}(C)^n) \qquad \qquad \llbracket \heartsuit \rrbracket : \mathcal{P}(C)^n \to \mathcal{P}(TC)$

to every modal operator \heartsuit of the language, parametric in C.

Together with a T-coalgebra (C, γ) this gives (in the unary case) a neighbourhood frame boolean algebra with operator

$$C \xrightarrow{\gamma} TC \xrightarrow{\llbracket \heartsuit \rrbracket} \mathcal{PP}(C) \qquad \qquad \mathcal{P}(C) \xrightarrow{\llbracket \heartsuit \rrbracket} \mathcal{P}(TC) \xrightarrow{\gamma^{-1}} \mathcal{P}(C)$$

Induced Coalgebraic Semantics $[\![\phi]\!]\subseteq C$ of a modal formula

$$\begin{array}{ll} \text{from a modal perspective} & \text{equivalent algebraic viewpoint} \\ c \in \llbracket \heartsuit \phi \rrbracket \text{ iff } \llbracket \phi \rrbracket \in \llbracket \heartsuit \rrbracket \circ \gamma(\llbracket \phi \rrbracket) & c \in \llbracket \heartsuit \phi \rrbracket \iff \gamma(c) \in \llbracket \heartsuit \rrbracket(\llbracket \phi \rrbracket) \\ \end{array}$$

Example: The Logic of Multigraphs

Modal Operators for $\mathcal{B}X = \{\mu : X \to \mathbb{N} \mid \operatorname{supp}(\mu) \text{ finite}\}$

Our Choice. $\heartsuit(\phi,\psi)$, intended meaning 'at least 5 times as much ϕ 's than ψ 's'

Associated Lifting.

$$\llbracket \heartsuit \rrbracket_X(A,B) = \{ \mu \in \mathcal{B}X \mid \mu(A) \ge 5 \cdot \mu(B) \}$$

where $\mu(A) = \sum_{x \in A} \mu(x)$

Satisfaction.

$$c \models \heartsuit(\phi, \psi) \iff \mu(\llbracket \phi \rrbracket) \ge 5 \cdot \mu(\llbracket \psi \rrbracket)$$

where $\mu=\gamma(c)$ is the local weighting as seen from point c.

(i.e. one *can* pick and choose the primitives but *has to* define their meaning)

Part III: Reasoning in Coalgebraic Logics

or:

What's a good proof system?

Synthetic Approach: One Proof Calculus for All

Recall. Semantics as algebra morphism

$$\begin{array}{c|c} \mathcal{P}_{f}(L) + L + TL \longrightarrow \mathcal{P}_{f}\mathcal{P}(C) + \mathcal{P}(C) + T\mathcal{P}(C) \\ & & & & & \\ & & & & \\ i & & & \mathcal{P}_{f}\mathcal{P}(C) + \mathcal{P}(C) + \mathcal{P}T(C) \\ & & & & & \\ & & & & & \\ L \longrightarrow \mathcal{P}(C) \end{array}$$

where $\rho_C : T\mathcal{P}(C) \to \mathcal{P}(TC)$ is $\rho_C(\Phi) = \{t \in TC \mid (t, \Phi) \in \overline{T}(\in)\}$

Slim Redistributions. 'import' the action of ρ into the proof system.

$$\Phi \in T\mathcal{P}(X)$$
 redistribution of $A \in \mathcal{P}(TX) \iff A \subseteq \rho_X(\Phi)$

Call Φ *slim* if $\Phi \in \mathcal{P}_{\omega}T_{\omega}(A)$ (i.e. Φ only re-arranges material from A) Notation. $SRD(A) = \{\Phi \in T\mathcal{P}(A) \mid \Phi \text{ slim redistribution of } A\}$ **Redistributions** of $\mathcal{B}X = \{f : X \to \mathbb{N} \mid \operatorname{supp}(f) \text{ finite}\}$

 $\Phi: \mathcal{P}(X) \to_f \mathbb{N} \in \mathcal{BP}X \text{ redistribution of } A \in \mathcal{P}(X \to_f \mathbb{N}) = \mathcal{P}(\mathcal{B}X)$ \iff

A only contains $f:X \to_f \mathbb{N}$ that allow to fill the 'magic square'

	x_1	x_2	•••	x_k	\sum
S_1					w_1
÷					••••
S_n					w_n
\sum	m_1	m_2	•••	m_n	

- x/S-entry is 0 if $x \notin S$
- m_j is f-multiplicity of x_j
- w_i is Φ -weight of S_i

 Φ is *slim* if each nozero S_i only contains nonzero x_i s relative to some element of A

Synthetic Proofs.

- judegements are inequalities $a \leq b$ for $a, b \in L$
- propositional logic and cut: from $a \leq b$ and $b \leq c$ infer $a \leq c$

Modal Proof Rules.

$$(\nabla 1) \quad \frac{\alpha \overline{\leq} \beta}{\nabla \alpha \leq \nabla \beta} \quad (\nabla 4) \quad \frac{\{a \land \nabla \alpha' \leq \bot \mid \alpha' \in T_{\omega}(\phi) \setminus \{\alpha\}\} \quad \top \leq \bigvee \phi}{a \leq \nabla \alpha}$$
$$(\nabla 2) \quad \frac{\{\nabla (T \land)(\Phi) \leq a \mid \Phi \in \mathsf{SRD}(A)\}}{\land \{\nabla \alpha \mid \alpha \in A\} \leq a} \quad (\nabla 3) \quad \frac{\{\nabla \alpha \leq a \mid (\alpha, \Phi) \in \overline{T}(\epsilon)\}}{\nabla (T \lor) \Phi \leq a}$$

where $a \in L, \alpha, \beta \in T_{\omega}L, A \in \mathcal{P}_{\omega}T_{\omega}(L)$ and $\Phi \in T_{\omega}\mathcal{P}_{\omega}(L)$.

Thm. [Kupke, Kurz, Venema 2009] The synthetic system is sound and complete over T-coalgebras.

Organic: Proof Systems for Homegrown Modalities

Recall. Language *L* given by operators \heartsuit , semantics by $\llbracket \heartsuit \rrbracket : \mathcal{P}(X) \to \mathcal{P}(TX)$

Proof Systems in terms of sequents: $\Gamma \subseteq L$ with $\llbracket \Gamma \rrbracket = \bigcup \{ \llbracket A \rrbracket \mid A \in \Gamma \}$

One-step Rules (*specific* for each choice of \heartsuit s)

 $\frac{\Gamma_1 \quad \dots \quad \Gamma_n}{\Gamma_0} \quad \sim \quad \frac{\text{property of states}}{\text{property of successors}} \quad \sim \quad \frac{\llbracket\Gamma_1 \rrbracket \cap \dots \cap \llbracket\Gamma_n \rrbracket \subseteq X}{\llbracket\Gamma_0 \rrbracket \subseteq TX}$

where

• $\Gamma_1, \ldots, \Gamma_n \subseteq V \cup \neg V$ are propositional over a set V of variables

• $\Gamma_0 \subseteq \{ \heartsuit(p_1, \dots, p_n) \mid \heartsuit n \text{-ary} \} \cup \{ \neg \heartsuit(p_1, \dots, p_n) \mid \heartsuit n \text{-ary} \}$

Crucial: need Coherence Conditions between proof rules and semantics

Consider a set X and a valuation $\tau: V \to \mathcal{P}(X)$.

Coherence: matching between rules and semantics at *one-step level*

Propositional Sequents $\Gamma \subseteq V \cup \neg V$

$$\Gamma \ \tau \text{-valid} \ \Longleftrightarrow \ [\![\Gamma]\!]_\tau = X \text{ where } [\![p]\!]_\tau = \tau(p)$$

Modalised Sequents $\Gamma \subseteq \{\pm \heartsuit(p_1, \ldots, p_n) \mid \heartsuit n \text{-ary}\}$

 $\Gamma \tau \text{-valid} \iff \llbracket \Gamma \rrbracket_{\tau} = TX \text{ where } \llbracket \heartsuit(p_1, \ldots, p_n) \rrbracket_{\tau} = \llbracket \heartsuit \rrbracket(\tau(p_1), \ldots, \tau(p_n))$

where \pm indicates possible negation.

Coherence relates τ -validity of premises with τ -validity of conclusions

One-Step Soundness of a set \mathcal{R} of one-step rules: for all $\tau: V \to \mathcal{P}(X)$

$$\Gamma_1, \ldots, \Gamma_n \tau$$
-valid $\implies \Gamma_0 \tau$ -valid

for all $\Gamma_1 \dots \Gamma_n / \Gamma_0 \in \mathcal{R}$

One-Step Completeness of a set \mathcal{R} of one-step rules: for all $\tau: V \to \mathcal{P}(X)$

$$\Gamma \tau$$
-valid $\implies \exists \frac{\Gamma_1 \dots \Gamma_n}{\Gamma_0} \in \mathcal{R} \ (\Gamma_i \sigma \tau$ -valid and $\Gamma_0 \sigma \subseteq \Gamma)$

for some renaming $\sigma: V \to V$, for all $\Gamma \subseteq_f \{\pm \heartsuit(p_1, \ldots, p_n) \mid \heartsuit n\text{-ary}\}.$

Thm. [P, 2003, Schröder 2007] One-step soundness and one-step completeness imply soundness and (cut-free) completeness, respectively, when augmented with propositional reasoning.

Organic Logics for Multisets

Proof Rules for $\mathcal{B}X = \{\mu : X \to \mathbb{N} \mid \operatorname{supp}(f) \text{ finite}\}$

Modal Operators

$$\Lambda = \{L_p(c_1, \ldots, c_m) \mid n \in \mathbb{N}, p_1, \ldots, p_m \in \mathbb{Z}\}\$$

Intended Meaning.

$$\llbracket L_p(c_1, \dots, c_m) \rrbracket (S_1, \dots, S_m) = \{ \mu \in \mathcal{B}X \mid \sum_{j=1}^m c_j \cdot \mu(S_j) \ge p \}$$

Sound and Complete Proof Rules. (subject to arith. side condition)

$$\frac{\sum_{i=1}^{n} r_i \cdot \sum_{j=1}^{m_i} c_i^j a_i^j \ge 0}{\{ \mathsf{sg}(r_i) L_{p_i}(c_1^i, \dots, c_{m_i}^i) (a_i^1, \dots, a_i^{m_i}) \mid i = 1, \dots, n \}}$$

•
$$\operatorname{sg}(r)A = A$$
 if $r > 0$ and $\operatorname{sg}(r)A = \neg A$ if $r < 0$

• premise reflects arithmetic of characteristic functions as propositional formula

Part IV: Automated Reasoning in Coalgebraic Logics

or:

How do I mechanise satisfiability?

Idea. Formulas $\phi \leftrightarrow$ Automata \mathbb{A}_{ϕ} so that

$$(c,C)\models\phi\iff \mathbb{A}\ \mathrm{accepts}\ (c,C)$$

where $C = (C, \gamma)$ is a T-coalgebra and $c \in C$.

Satisfiability checking via automata: ϕ satisfiable $\iff L(\mathbb{A}_{\phi}) \neq \emptyset$

Coalgebra Automata are tuples $\mathbb{A} = (A, a_i, \Delta, \Omega)$ where

- A is a finite set of states and $a_I \in A$ is initial
- $\Delta: A \to \mathcal{PP}(TA)$ is the transition function
- $\Omega: A \to \mathbb{N}$ is a parity function

(we think of these automata as *alternating* due to layering of \mathcal{P})

Acceptance via Parity Games

Given. $\mathbb{A} = (A, a_i, \Delta, \Omega)$ and state c of T-coalgebra (C, γ) .

Acceptance. A accepts c if \exists has a winning strategy from (a_I, c) on the board

 $B = (A \times C) \cup (TA \times TC) \cup (\mathcal{P}TA \times C) \cup \mathcal{P}(A \times C)$

where legal moves are as follows:

Position	Player	Moves	Priority
$(a,c) \in A \times C$	Ξ	$\{(\Xi, c) \in \mathcal{P}(TA) \times C \mid \Xi \in \Delta(a)\}$	$\Omega(a)$
$(\Xi, c) \in \mathcal{P}T(A) \times C$	\forall	$\{(\xi,\tau)\in TA\times TC\mid \xi\in\Xi,\tau=\gamma(c)\}$	0
$(\xi,\tau)\in TA\times TC$	Ξ	$\{Z \in \mathcal{P}(A \times C) \mid (\xi, \tau) \in \overline{T}Z\}$	0
$Z \in \mathcal{P}(A \times C)$	\forall	Z	0

Intuition. (Recall $\Delta : A \to \mathcal{PPTA}$)

- $\Delta(a) \sim \text{formula in DNF: } \exists \text{ chooses disjunct, } \forall \text{ chooses element}$
- 'modal' steps lift acceptance relation and attract priorities

Automata and Fixpoint Logic

Modal Language. Positive Logic + ∇ + *fixpoint formulas*

$$\mu L ::= x \mid \top \mid \perp \mid \phi \land \psi \mid \phi \lor \psi \mid \nabla \alpha \mid \mu x.\phi \mid \nu x.\phi$$

where $\alpha \in T_{\omega}L$ and $x \in V$ is a variable.

Semantics. As before, with μ/ν interpreted as least/greatest fixpoints.

Thm. [Venema, 2008] For every $\phi \in \mu L$ there exists \mathbb{A}_{ϕ} such that

 $\mathbb{A}_{\phi} \operatorname{accepts} \left(c, C \right) \iff c \models \phi$

and vice versa. That is: Automata are Formulas are Automata.

Intuition.

- loops in the automaton \sim unfolding of fixpoints
- parity condition: only *finite* unfoldings of *least* fixpoints

Here. Easier to use *Tableaux* than *Sequent Calculi*

Formulas.

 $L \ni A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \heartsuit(A_1, \dots, A_n) \mid \eta p.A$

where \heartsuit is $n\text{-}\mathrm{ary}$ and $\eta\in\{\mu,\nu\}$

Tableau Sequents. Finite sets of formulas $\Gamma = \{A_1, \ldots, A_n\}$ read *conjunctively*

Tableau Rules. As before, with modal rules dualised

 $\frac{\Gamma; A \wedge B}{\Gamma; A; B} \quad \frac{\Gamma; A \vee B}{\Gamma; A \quad \Gamma; B} \quad \frac{\Gamma; \eta p. A}{\Gamma; A[p := \eta p. A]} \quad \frac{\Gamma_0 \sigma, \Delta}{\Gamma_1 \sigma \dots \Gamma_n \sigma} \quad \frac{\Gamma, A, \overline{A}}{\Gamma}$

Remarks.

- Expansion only ever creates *finitely* many formulas
- No distinction between least and greatest fixpoints

Satisfiability via Games

As before. Two-Player Parity Games

- every board position b has a priority $\Omega(b)$
- \exists wins (and \forall looses) a play if largest infinitely occurring priority is even
- unfolding of *least fixpoints* gives *odd* priorities

Model Checking Game

- modal satisfiability game
- played on state/formula pairs
- unfolding of fixpoints

Tableaux Game

- played on sequents and rules
- \forall chooses rule
- \exists chooses conclusion

Thm. [Cîrstea, Kupke, P 2009] A formula is satisfiable if it has a closed tableau.

Part V: Other Aspects of Coalgebraic Logics

or:

What is there that I didn't comment on?

Other Aspects

Coalgebraic Logics, Categorically.

- Logics via Adjunctions
 [Klin, Kurz, Jacobs, Sokolova]
- Logics via Presentations
 [Bonsangue, Kurz]

Compositionality

Logics for Composite Functors
 [Cîrstea, P, Schröder]

Proof Theory.

- Sequents for ∇
 [Bílková, Palmigiano, Venema]
- Interpolation [P, Schröder]

Synthetic vs Organic.

• back and forth [Leal]

Complexity.

via Tableaux
 [Cîrstea, Kupke, Schröder, P]

Extensions of Set-based logics.

- Hybridisation
 [Myers,Kupke,P,Schröder]
- Global Consequence
 [Goré,Kupke,P]
- Path-Based Logics [Cîrstea]

Part VI: Perspectives

or:

What should we think about in the future?

Some Biased Food for Thought

Coalgebraic Logics are Feature-Rich, Compositional and Decdiable

Strategic.

- Implement: Demonstrate techniques on non-trivial problems
- Apply: Use coalgebraic logics in modelling and verification

Technical.

- Understand: relationship between Tableaux and Automata
- *Deepen:* (Automated) reasoning with frame conditions

Conceptual.

- Generalise: How about e.g. MV-algebras modelling uncertainty?
- *Learn:* Adapt ILP Techniques to enable machine learning

Last Part: Questions

and: Thanks for your attention!