Coalgebras and Modal Logics: an Overview

Dirk Pattinson, Imperial College London

CMCS 2010, Paphos, Cyprus

Part I: Examples

or:

Why should I care?

A Cook's Tour Through Modal Semantics

Kripke Frames.

$$
C \rightarrow \mathcal{P}(C)
$$

Multigraph Frames.

Probabilistic Frames.

$$
C \rightarrow \mathcal{D}(C)
$$

$$
\mathcal{D}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x)=1\right\}
$$

More Examples

Neighbourhood Frames.

$$
C \rightarrow \mathcal{P} \mathcal{P}(C)=\mathcal{N}(C)
$$

mapping each world $c \in C$ to a set of neighbourhoods

Game Frames over a set N of agents

$$
C \rightarrow\left\{\left(\left(S_{n}\right)_{n \in N}, f\right) \mid f: \prod_{n} S_{n} \rightarrow C\right\}=\mathcal{G}(C)
$$

associating to each state $c \in C$ a strategic game with strategy sets S_{n} and outcome function f

Conditional Frames.

$$
C \rightarrow\{f: \mathcal{P}(C) \rightarrow \mathcal{P}(C) \mid f \text { a function }\}=\mathcal{C}(C)
$$

where every state yields a selection function that assigns properties to conditions

Coalgebras and Modalites: A Non-Definition

Coalgebras are about successors. T-coalgebras are pairs (C, γ) where

$$
\gamma: C \rightarrow T C
$$

maps states to successors. Write Coalg (T) for the collection of T-coalgebras.

$$
\begin{aligned}
\text { states } & =\text { elements } c \in C & \text { properties of states } & =\text { subsets } A \subseteq C \\
\text { successors } & =\text { elements } \gamma(c) \in T C & \text { properties of successors } & =\text { subsets } \oslash A \subseteq T C
\end{aligned}
$$

Modal Operators are about properties of successors, so

$$
\frac{\llbracket \phi_{1} \rrbracket, \ldots, \llbracket \phi_{n} \rrbracket \subseteq C}{\llbracket \subseteq\left(\phi_{1}, \ldots, \phi_{n}\right) \rrbracket \subseteq T C}
$$

with the intended interpretation $c \models \odot\left(\phi_{1}, \ldots, \phi_{n}\right)$ iff $\gamma(c) \in \llbracket \bigcirc \phi_{1}, \ldots, \phi_{n} \rrbracket$.

Part II: Approaches to Syntax and Semantics

 or:What's a modal operator?

Moss' Coalgebraic Logic: The Synthetic Approach

Idea. \triangle reflects the action of T on sets: 'import' semantics into syntax

Concrete Syntax

$$
\frac{\Phi \subseteq_{f} L}{\bigwedge \Phi \in L} \quad \frac{\phi \in L}{\neg \phi \in L} \quad \frac{\Phi \in T_{\omega} L}{\nabla \Phi \in L}
$$

Modal Semantics

Abstract Syntax:

$$
L \cong F(L)=\mathcal{P}_{f}(L)+L+T_{\omega}(L)
$$

Algebraic Semantics
relative to T-coalgebra ($C, \gamma: C \rightarrow T C$) where T_{ω} is the finitary part of T

Synthetic Semantics Explained

Relation Lifting: from states to successors

Formal Definition. (Assume T preserves weak pullbacks to make things work)

$$
\bar{T} R=\left\{\left(T \pi_{1}(w), T \pi_{2}(w)\right) \mid w \in T R\right\} \subseteq T X \times T Y
$$

Modal Semantics. Assume that \models is already given for 'ingredients' of $\alpha \in T L$

$$
c \models \nabla \alpha \Longleftrightarrow(\gamma(c), \alpha) \in \bar{T}(\models)
$$

for $c \in C$ and $(C, \gamma: C \rightarrow T C) \in \operatorname{Coalg}(T)$.

Thm. [Moss, 1999] L has the Hennessy-Milner Property.

Example: Coalgebraic Logic of Multigraphs

Modal Operators for $\mathcal{B} X=\{f: X \rightarrow \mathbb{N} \mid \operatorname{supp}(f)$ finite $\}$

$$
\frac{\alpha: L \rightarrow \mathbb{N} \text { and } \operatorname{supp}(\alpha) \text { finite }}{\nabla \alpha \in L}
$$

Satisfaction. $c \models \nabla \alpha \Longleftrightarrow(\gamma(c), \alpha) \in T(\models) \Longleftrightarrow$ the 'magic square'

	x_{1}	x_{2}	\cdots	x_{k}	\sum
ϕ_{1}					w_{1}
\vdots					\vdots
ϕ_{n}					w_{n}
Σ	m_{1}	m_{2}	\ldots	m_{n}	

- $m_{j}=\gamma(c)\left(x_{j}\right)$ is multiplicity of x_{j}
- $w_{i}=\alpha\left(\phi_{i}\right)$ is weight of ϕ_{i}
- x / ϕ-entry is 0 if $x \not \vDash \phi$
can be filled according to the rules on the right.

Synthetic Semantics, Algebraically

Syntax as initial algebra. $L \cong \mathcal{P}_{f}(L)+L T(L)$

Semantics as algebra morphism
where $\rho_{C}: T \mathcal{P}(C) \rightarrow \mathcal{P}(T C)$ is ' lifted membership', i.e.

$$
\rho_{C}(\Phi)=\{t \in T C \mid(t, \Phi) \in \bar{T}(\in)\}
$$

where $\epsilon_{C} \subseteq C \times \mathcal{P}(C)$ is membership (for $T=\mathcal{B}$ a 'magic square' problem)

Logics via Liftings: The Organic Approach

Idea. take \checkmark what we want it to mean: grow your own modalities
T-Structures then define the semantics of modalities: they assign a nohd frame translation
or, equivalently, a predicate lifting

$$
\llbracket ৎ \rrbracket: T C \rightarrow \mathcal{P}\left(\mathcal{P}(C)^{n}\right) \quad \llbracket ৎ \rrbracket: \mathcal{P}(C)^{n} \rightarrow \mathcal{P}(T C)
$$

to every modal operator \triangle of the language, parametric in C.

Together with a T-coalgebra (C, γ) this gives (in the unary case) a neighbourhood frame boolean algebra with operator

$$
C \xrightarrow{\gamma} T C \xrightarrow{\llbracket \subseteq \rrbracket} \mathcal{P} \mathcal{P}(C) \quad \mathcal{P}(C) \xrightarrow{\llbracket \subseteq \rrbracket} \mathcal{P}(T C) \xrightarrow{\gamma^{-1}} \mathcal{P}(C)
$$

Induced Coalgebraic Semantics $\llbracket \phi \rrbracket \subseteq C$ of a modal formula

$$
\begin{array}{|ll}
\hline \text { from a modal perspective } & \text { equivalent algebraic viewpoint } \\
c \in \llbracket \bigcirc \phi \rrbracket \text { iff } \llbracket \phi \rrbracket \in \llbracket \bigcirc \rrbracket \circ \gamma(\llbracket \phi \rrbracket) & c \in \llbracket \bigcirc \phi \rrbracket \Longleftrightarrow \gamma(c) \in \llbracket \bigcirc \rrbracket(\llbracket \phi \rrbracket)
\end{array}
$$

Example: The Logic of Multigraphs

Modal Operators for $\mathcal{B} X=\{\mu: X \rightarrow \mathbb{N} \mid \operatorname{supp}(\mu)$ finite $\}$

Our Choice. $\odot(\phi, \psi)$, intended meaning 'at least 5 times as much ϕ 's than ψ 's'

Associated Lifting.

$$
\llbracket \subseteq \rrbracket_{X}(A, B)=\{\mu \in \mathcal{B} X \mid \mu(A) \geq 5 \cdot \mu(B)\}
$$

where $\mu(A)=\sum_{x \in A} \mu(x)$

Satisfaction.

$$
c \models \bigcirc(\phi, \psi) \Longleftrightarrow \mu(\llbracket \phi \rrbracket) \geq 5 \cdot \mu(\llbracket \psi \rrbracket)
$$

where $\mu=\gamma(c)$ is the local weighting as seen from point c.
(i.e. one can pick and choose the primitives but has to define their meaning)

Part III: Reasoning in Coalgebraic Logics

 or:What's a good proof system?

Synthetic Approach: One Proof Calculus for All

Recall. Semantics as algebra morphism
where $\rho_{C}: T \mathcal{P}(C) \rightarrow \mathcal{P}(T C)$ is $\rho_{C}(\Phi)=\{t \in T C \mid(t, \Phi) \in \bar{T}(\in)\}$
Slim Redistributions. 'import' the action of ρ into the proof system.

$$
\Phi \in T \mathcal{P}(X) \text { redistribution of } A \in \mathcal{P}(T X) \Longleftrightarrow A \subseteq \rho_{X}(\Phi)
$$

Call Φ slim if $\Phi \in \mathcal{P}_{\omega} T_{\omega}(A)$ (i.e. Φ only re-arranges material from A)
Notation. $\operatorname{SRD}(A)=\{\Phi \in T \mathcal{P}(A) \mid \Phi$ slim redistribution of $A\}$

Redistributions of Multisets

Redistributions of $\mathcal{B} X=\{f: X \rightarrow \mathbb{N} \mid \operatorname{supp}(f)$ finite $\}$
$\Phi: \mathcal{P}(X) \rightarrow_{f} \mathbb{N} \in \mathcal{B} \mathcal{P} X$ redistribution of $A \in \mathcal{P}\left(X \rightarrow_{f} \mathbb{N}\right)=\mathcal{P}(\mathcal{B} X)$ \Longleftrightarrow
A only contains $f: X \rightarrow_{f} \mathbb{N}$ that allow to fill the 'magic square'

	x_{1}	x_{2}	\cdots	x_{k}	\sum
S_{1}					w_{1}
\vdots					\vdots
S_{n}					w_{n}
Σ	m_{1}	m_{2}	\ldots	m_{n}	

- x / S-entry is 0 if $x \notin S$
- m_{j} is f-multiplicity of x_{j}
- w_{i} is Φ-weight of S_{i}
Φ is slim if each nozero S_{i} only contains nonzero x_{j} s relative to some element of A

The Synthetic Proof System

Synthetic Proofs.

- judegements are inequalities $a \leq b$ for $a, b \in L$
- propositional logic and cut: from $a \leq b$ and $b \leq c$ infer $a \leq c$

Modal Proof Rules.

$(\nabla 1) \frac{\alpha \leq \beta}{\nabla \alpha \leq \nabla \beta} \quad(\nabla 4) \quad \frac{\left\{a \wedge \nabla \alpha^{\prime} \leq \perp \mid \alpha^{\prime} \in T_{\omega}(\phi) \backslash\{\alpha\}\right\}}{a \leq \nabla \alpha} \quad \top \leq \bigvee \phi$
$(\nabla 2) \quad \frac{\{\nabla(T \bigwedge)(\Phi) \leq a \mid \Phi \in \operatorname{SRD}(A)\}}{\bigwedge\{\nabla \alpha \mid \alpha \in A\} \leq a} \quad(\nabla 3) \quad \frac{\{\nabla \alpha \leq a \mid(\alpha, \Phi) \in \bar{T}(\in)\}}{\nabla(T \bigvee) \Phi \leq a}$
where $a \in L, \alpha, \beta \in T_{\omega} L, A \in \mathcal{P}_{\omega} T_{\omega}(L)$ and $\Phi \in T_{\omega} \mathcal{P}_{\omega}(L)$.

Thm. [Kupke, Kurz, Venema 2009] The synthetic system is sound and complete over T-coalgebras.

Organic: Proof Systems for Homegrown Modalities

Recall. Language L given by operators \boxtimes, semantics by $\llbracket \subseteq \rrbracket: \mathcal{P}(X) \rightarrow \mathcal{P}(T X)$

Proof Systems in terms of sequents: $\Gamma \subseteq L$ with $\llbracket \Gamma \rrbracket=\bigcup\{\llbracket A \rrbracket \mid A \in \Gamma\}$

One-step Rules (specific for each choice of \mho_{s})

$$
\frac{\Gamma_{1} \ldots \Gamma_{n}}{\Gamma_{0}} \sim \frac{\text { property of states }}{\text { property of successors }} \sim \frac{\llbracket \Gamma_{1} \rrbracket \cap \cdots \cap \llbracket \Gamma_{n} \rrbracket \subseteq X}{\llbracket \Gamma_{0} \rrbracket \subseteq T X}
$$

where

- $\Gamma_{1}, \ldots, \Gamma_{n} \subseteq V \cup \neg V$ are propositional over a set V of variables
- $\Gamma_{0} \subseteq\left\{\odot\left(p_{1}, \ldots, p_{n}\right) \mid \odot n\right.$-ary $\} \cup\left\{\neg \circlearrowleft\left(p_{1}, \ldots, p_{n}\right) \mid \odot n\right.$-ary $\}$

Crucial: need Coherence Conditions between proof rules and semantics

Organic Modalities: Coherence Conditions

Consider a set X and a valuation $\tau: V \rightarrow \mathcal{P}(X)$.
Coherence: matching between rules and semantics at one-step level

Propositional Sequents $\Gamma \subseteq V \cup \neg V$

$$
\Gamma \tau \text {-valid } \Longleftrightarrow \llbracket \Gamma \rrbracket_{\tau}=X \text { where } \llbracket p \rrbracket_{\tau}=\tau(p)
$$

Modalised Sequents $\Gamma \subseteq\left\{ \pm \odot\left(p_{1}, \ldots, p_{n}\right) \mid \odot n\right.$-ary $\}$
$\Gamma \tau$-valid $\Longleftrightarrow \llbracket \Gamma \rrbracket_{\tau}=T X$ where $\llbracket \bigcirc\left(p_{1}, \ldots, p_{n}\right) \rrbracket_{\tau}=\llbracket \bigcirc \rrbracket\left(\tau\left(p_{1}\right), \ldots, \tau\left(p_{n}\right)\right)$
where \pm indicates possible negation.

Coherence relates τ-validity of premises with τ-validity of conclusions

Organic Modalities: Coherence Conditions

One-Step Soundness of a set \mathcal{R} of one-step rules: for all $\tau: V \rightarrow \mathcal{P}(X)$

$$
\Gamma_{1}, \ldots, \Gamma_{n} \tau \text {-valid } \Longrightarrow \Gamma_{0} \tau \text {-valid }
$$

for all $\Gamma_{1} \ldots \Gamma_{n} / \Gamma_{0} \in \mathcal{R}$

One-Step Completeness of a set \mathcal{R} of one-step rules: for all $\tau: V \rightarrow \mathcal{P}(X)$

$$
\Gamma \tau \text {-valid } \Longrightarrow \exists \frac{\Gamma_{1} \ldots \Gamma_{n}}{\Gamma_{0}} \in \mathcal{R}\left(\Gamma_{i} \sigma \tau \text {-valid and } \Gamma_{0} \sigma \subseteq \Gamma\right)
$$

for some renaming $\sigma: V \rightarrow V$, for all $\Gamma \subseteq_{f}\left\{ \pm \triangle\left(p_{1}, \ldots, p_{n}\right) \mid \odot n\right.$-ary $\}$.

Thm. [P, 2003, Schröder 2007] One-step soundness and one-step completeness imply soundness and (cut-free) completeness, respectively, when augmented with propositional reasoning.

Organic Logics for Multisets

Proof Rules for $\mathcal{B} X=\{\mu: X \rightarrow \mathbb{N} \mid \operatorname{supp}(f)$ finite $\}$
Modal Operators

$$
\Lambda=\left\{L_{p}\left(c_{1}, \ldots, c_{m}\right) \mid n \in \mathbb{N}, p_{1}, \ldots, p_{m} \in \mathbb{Z}\right\}
$$

Intended Meaning.

$$
\llbracket L_{p}\left(c_{1}, \ldots, c_{m}\right) \rrbracket\left(S_{1}, \ldots, S_{m}\right)=\left\{\mu \in \mathcal{B} X \mid \sum_{j=1}^{m} c_{j} \cdot \mu\left(S_{j}\right) \geq p\right\}
$$

Sound and Complete Proof Rules. (subject to arith. side condition)

$$
\frac{\sum_{i=1}^{n} r_{i} \cdot \sum_{j=1}^{m_{i}} c_{i}^{j} a_{i}^{j} \geq 0}{\left\{\operatorname{sg}\left(r_{i}\right) L_{p_{i}}\left(c_{1}^{i}, \ldots, c_{m_{i}}^{i}\right)\left(a_{i}^{1}, \ldots, a_{i}^{m_{i}}\right) \mid i=1, \ldots, n\right\}}
$$

- $\operatorname{sg}(r) A=A$ if $r>0$ and $\operatorname{sg}(r) A=\neg A$ if $r<0$
- premise reflects arithmetic of characteristic functions as propositional formula

Part IV: Automated Reasoning in Coalgebraic Logics

or:

How do I mechanise satisfiability?

Synthetic: Automata for Modal Formulas

Idea. Formulas $\phi \leftrightarrow$ Automata \mathbb{A}_{ϕ} so that

$$
(c, C) \models \phi \Longleftrightarrow \mathbb{A} \text { accepts }(c, C)
$$

where $C=(C, \gamma)$ is a T-coalgebra and $c \in C$.

Satisfiability checking via automata: ϕ satisfiable $\Longleftrightarrow L\left(\mathbb{A}_{\phi}\right) \neq \emptyset$

Coalgebra Automata are tuples $\mathbb{A}=\left(A, a_{i}, \Delta, \Omega\right)$ where

- A is a finite set of states and $a_{I} \in A$ is initial
- $\Delta: A \rightarrow \mathcal{P} \mathcal{P}(T A)$ is the transition function
- $\Omega: A \rightarrow \mathbb{N}$ is a parity function
(we think of these automata as alternating due to layering of \mathcal{P})

Acceptance via Parity Games

Given. $\mathbb{A}=\left(A, a_{i}, \Delta, \Omega\right)$ and state c of T-coalgebra (C, γ).
Acceptance. \mathbb{A} accepts c if \exists has a winning strategy from $\left(a_{I}, c\right)$ on the board

$$
B=(A \times C) \cup(T A \times T C) \cup(\mathcal{P} T A \times C) \cup \mathcal{P}(A \times C
$$

where legal moves are as follows:

Position	Player	Moves	Priority
$(a, c) \in A \times C$	\exists	$\{(\Xi, c) \in \mathcal{P}(T A) \times C \mid \Xi \in \Delta(a)\}$	$\Omega(a)$
$(\Xi, c) \in \mathcal{P} T(A) \times C$	\forall	$\{(\xi, \tau) \in T A \times T C \mid \xi \in \Xi, \tau=\gamma(c)\}$	0
$(\xi, \tau) \in T A \times T C$	\exists	$\{Z \in \mathcal{P}(A \times C) \mid(\xi, \tau) \in \bar{T} Z\}$	0
$Z \in \mathcal{P}(A \times C)$	\forall	Z	0

Intuition. (Recall $\Delta: A \rightarrow \mathcal{P P} T A$)

- $\Delta(a) \sim$ formula in DNF: \exists chooses disjunct, \forall chooses element
- 'modal' steps lift acceptance relation and attract priorities

Automata and Fixpoint Logic

Modal Language. Positive Logic $+\nabla+$ fixpoint formulas

$$
\mu L::=x|\top| \perp|\phi \wedge \psi| \phi \vee \psi|\nabla \alpha| \mu x . \phi \mid \nu x . \phi
$$

where $\alpha \in T_{\omega} L$ and $x \in V$ is a variable.

Semantics. As before, with μ / ν interpreted as least/greatest fixpoints.

Thm. [Venema, 2008] For every $\phi \in \mu L$ there exists \mathbb{A}_{ϕ} such that

$$
\mathbb{A}_{\phi} \text { accepts }(c, C) \Longleftrightarrow c \models \phi
$$

and vice versa. That is: Automata are Formulas are Automata.

Intuition.

- loops in the automaton \sim unfolding of fixpoints
- parity condition: only finite unfoldings of least fixpoints

Organic: Tableau Calculi

Here. Easier to use Tableaux than Sequent Calculi

Formulas.

$$
L \ni A, B::=p|\bar{p}| A \wedge B|A \vee B| \odot\left(A_{1}, \ldots, A_{n}\right) \mid \eta p . A
$$

where \bigcirc is n-ary and $\eta \in\{\mu, \nu\}$

Tableau Sequents. Finite sets of formulas $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\}$ read conjunctively
Tableau Rules. As before, with modal rules dualised

$$
\frac{\Gamma ; A \wedge B}{\Gamma ; A ; B} \quad \frac{\Gamma ; A \vee B}{\Gamma ; A \quad \Gamma ; B} \quad \frac{\Gamma ; \eta p \cdot A}{\Gamma ; A[p:=\eta p . A]} \quad \frac{\Gamma_{0} \sigma, \Delta}{\Gamma_{1} \sigma \ldots \Gamma_{n} \sigma} \quad \underline{\Gamma, A, \bar{A}}
$$

Remarks.

- Expansion only ever creates finitely many formulas
- No distinction between least and greatest fixpoints

Satisfiability via Games

As before. Two-Player Parity Games

- every board position b has a priority $\Omega(b)$
- \exists wins (and \forall looses) a play if largest infinitely occurring priority is even
- unfolding of least fixpoints gives odd priorities

Model Checking Game

- modal satisfiability game
- played on state/formula pairs
- unfolding of fixpoints

Tableaux Game

- played on sequents and rules
- \forall chooses rule
- \exists chooses conclusion

Thm. [Cîrstea, Kupke, P 2009] A formula is satisfiable if it has a closed tableau.

Part V: Other Aspects of Coalgebraic Logics

 or:What is there that I didn't comment on?

Other Aspects

Coalgebraic Logics, Categorically.

- Logics via Adjunctions
[Klin, Kurz, Jacobs, Sokolova]
- Logics via Presentations [Bonsangue, Kurz]

Compositionality

- Logics for Composite Functors [Cîrstea, P, Schröder]

Proof Theory.

- Sequents for ∇
[Bíková, Palmigiano, Venema]
- Interpolation [P, Schröder]

Synthetic vs Organic.

- back and forth [Leal]

Complexity.

- via Tableaux
[Cîrstea, Kupke, Schröder, P]

Extensions of Set-based logics.

- Hybridisation
[Myers,Kupke,P,Schröder]
- Global Consequence
[Goré,Kupke,P]
- Path-Based Logics [Cîrstea]

Part VI: Perspectives

or:
What should we think about in the future?

Some Biased Food for Thought

Coalgebraic Logics are Feature-Rich, Compositional and Decdiable

Strategic.

- Implement: Demonstrate techniques on non-trivial problems
- Apply: Use coalgebraic logics in modelling and verification

Technical.

- Understand: relationship between Tableaux and Automata
- Deepen: (Automated) reasoning with frame conditions

Conceptual.

- Generalise: How about e.g. MV-algebras modelling uncertainty?
- Learn: Adapt ILP Techniques to enable machine learning

Last Part: Questions

 and:Thanks for your attention!

