
Coalgebras and Modal Logics: an Overview

Dirk Pattinson, Imperial College London

CMCS 2010, Paphos, Cyprus



Part I: Examples

or:

Why should I care?
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A Cook’s Tour Through Modal Semantics

Kripke Frames. p

~p

p

C → P(C)

Multigraph Frames.
4

2
p

~p

p

C → B(C)

B(X) = {f : X → N | supp(f) finite}

Probabilistic Frames.
p

p

~p

0.8

0.2

C → D(C)

D(X) = {µ : X → [0, 1] |
∑

x∈X µ(x) = 1}
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More Examples

Neighbourhood Frames.

C → PP(C) = N (C)

mapping each world c ∈ C to a set of neighbourhoods

Game Frames over a set N of agents

C → {((Sn)n∈N , f) | f :
∏

n

Sn → C} = G(C)

associating to each state c ∈ C a strategic game with strategy sets Sn and

outcome function f

Conditional Frames.

C → {f : P(C) → P(C) | f a function} = C(C)

where every state yields a selection function that assigns properties to conditions
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Coalgebras and Modalites: A Non-Definition

Coalgebras are about successors. T -coalgebras are pairs (C, γ) where

γ : C → TC

maps states to successors. Write Coalg(T ) for the collection of T -coalgebras.

states = elements c ∈ C

successors = elements γ(c) ∈ TC

properties of states = subsetsA ⊆ C

properties of successors = subsets ♥A ⊆ TC

Modal Operators are about properties of successors, so

Jφ1K, . . . , JφnK ⊆ C

J♥(φ1, . . . , φn)K ⊆ TC

with the intended interpretation c |= ♥(φ1, . . . , φn) iff γ(c) ∈ J♥φ1, . . . , φnK.
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Part II: Approaches to Syntax and Semantics

or:

What’s a modal operator?
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Moss’ Coalgebraic Logic: The Synthetic Approach

Idea. ♥ reflects the action of T on sets: ‘import’ semantics into syntax

Concrete Syntax

Φ ⊆f L∧
Φ ∈ L

φ ∈ L

¬φ ∈ L

Φ ∈ TωL

∇Φ ∈ L

Abstract Syntax:

L ∼= F (L) = Pf (L) + L+ Tω(L)

Modal Semantics

c |= ∇Φ ⇐⇒ (γ(c),Φ) ∈ T (|=)

Algebraic Semantics

F (L)

i

F (P(C))

γ̂

L
J·K

P(C)

relative to T -coalgebra (C, γ : C → TC) where Tω is the finitary part of T
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Synthetic Semantics Explained

Relation Lifting: from states to successors

R

π1 π2

X Y

7→

TR

Tπ1 Tπ2

TX TY

Formal Definition. (Assume T preserves weak pullbacks to make things work)

TR = {(Tπ1(w), Tπ2(w)) | w ∈ TR} ⊆ TX × TY

Modal Semantics. Assume that |= is already given for ‘ingredients’ of α ∈ TL

c |= ∇α ⇐⇒ (γ(c), α) ∈ T (|=)

for c ∈ C and (C, γ : C → TC) ∈ Coalg(T ).

Thm. [Moss, 1999] L has the Hennessy-Milner Property.
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Example: Coalgebraic Logic of Multigraphs

Modal Operators for BX = {f : X → N | supp(f) finite}

α : L→ N and supp(α) finite

∇α ∈ L

Satisfaction. c |= ∇α ⇐⇒ (γ(c), α) ∈ T (|=) ⇐⇒ the ‘magic square’

x1 x2 · · · xk

∑

φ1 w1

...
...

φn wn

Σ m1 m2 . . . mn

• mj = γ(c)(xj) is multiplicity of xj

• wi = α(φi) is weight of φi

• x/φ-entry is 0 if x 6|= φ

can be filled according to the rules on the right.
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Synthetic Semantics, Algebraically

Syntax as initial algebra. L ∼= Pf (L) + LT (L)

Semantics as algebra morphism

Pf (L) + L+ TL

i

Pf (P(C)) + P(C) + TP(C)

1+1+ρC

Pf (L) + P(C) + P(TC)

[
T

,(·)c,γ−1]

L
J·K

P(C)

where ρC : TP(C) → P(TC) is ’ lifted membership’, i.e.

ρC(Φ) = {t ∈ TC | (t,Φ) ∈ T (∈)}

where ǫC ⊆ C × P(C) is membership (for T = B a ’magic square’ problem)
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Logics via Liftings: The Organic Approach

Idea. take ♥ what we want it to mean: grow your own modalities

T -Structures then define the semantics of modalities: they

assign a nbhd frame translation

J♥K : TC → P(P(C)n)

or, equivalently, a predicate lifting

J♥K : P(C)n → P(TC)

to every modal operator ♥ of the language, parametric in C .

Together with a T -coalgebra (C, γ) this gives (in the unary case) a

neighbourhood frame

C
γ

TC
J♥K

PP(C)

boolean algebra with operator

P(C)
J♥K

P(TC)
γ−1

P(C)

Induced Coalgebraic Semantics JφK ⊆ C of a modal formula

from a modal perspective

c ∈ J♥φK iff JφK ∈ J♥K ◦ γ(JφK)

equivalent algebraic viewpoint

c ∈ J♥φK ⇐⇒ γ(c) ∈ J♥K(JφK)
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Example: The Logic of Multigraphs

Modal Operators for BX = {µ : X → N | supp(µ) finite}

Our Choice. ♥(φ, ψ), intended meaning ‘at least 5 times as much φ’s than ψ’s’

Associated Lifting.

J♥KX(A,B) = {µ ∈ BX | µ(A) ≥ 5 · µ(B)}

where µ(A) =
∑

x∈A µ(x)

Satisfaction.

c |= ♥(φ, ψ) ⇐⇒ µ(JφK) ≥ 5 · µ(JψK)

where µ = γ(c) is the local weighting as seen from point c.

(i.e. one can pick and choose the primitives but has to define their meaning)
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Part III: Reasoning in Coalgebraic Logics

or:

What’s a good proof system?
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Synthetic Approach: One Proof Calculus for All

Recall. Semantics as algebra morphism

Pf (L) + L+ TL

i

PfP(C) + P(C) + TP(C)

1+1+ρC

PfP(C) + P(C) + PT (C)

[
T

,(·)c,γ−1]

L
J·K

P(C)

where ρC : TP(C) → P(TC) is ρC(Φ) = {t ∈ TC | (t,Φ) ∈ T (∈)}

Slim Redistributions. ’import’ the action of ρ into the proof system.

Φ ∈ TP(X) redistribution of A ∈ P(TX) ⇐⇒ A ⊆ ρX(Φ)

Call Φ slim if Φ ∈ PωTω(A) (i.e. Φ only re-arranges material from A)

Notation. SRD(A) = {Φ ∈ TP(A) | Φ slim redistribution of A}
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Redistributions of Multisets

Redistributions of BX = {f : X → N | supp(f) finite}

Φ : P(X) →f N ∈ BPX redistribution of A ∈ P(X →f N) = P(BX)

⇐⇒

A only contains f : X →f N that allow to fill the ’magic square’

x1 x2 · · · xk

∑

S1 w1

...
...

Sn wn

Σ m1 m2 . . . mn

• x/S-entry is 0 if x 6∈ S

• mj is f -multiplicity of xj

• wi is Φ-weight of Si

Φ is slim if each nozero Si only contains nonzero xjs relative to some element ofA
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The Synthetic Proof System

Synthetic Proofs.

• judegements are inequalities a ≤ b for a, b ∈ L

• propositional logic and cut: from a ≤ b and b ≤ c infer a ≤ c

Modal Proof Rules.

(∇1)
α≤β

∇α ≤ ∇β
(∇4)

{a ∧∇α′ ≤ ⊥ | α′ ∈ Tω(φ) \ {α}} ⊤ ≤
∨
φ

a ≤ ∇α

(∇2)
{∇(T

∧
)(Φ) ≤ a | Φ ∈ SRD(A)}∧
{∇α | α ∈ A} ≤ a

(∇3)
{∇α ≤ a | (α,Φ) ∈ T (∈)}

∇(T
∨

)Φ ≤ a

where a ∈ L, α, β ∈ TωL,A ∈ PωTω(L) and Φ ∈ TωPω(L).

Thm. [Kupke, Kurz, Venema 2009] The synthetic system is sound and complete

over T -coalgebras.
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Organic: Proof Systems for Homegrown Modalities

Recall. Language L given by operators ♥, semantics by J♥K : P(X) → P(TX)

Proof Systems in terms of sequents: Γ ⊆ L with JΓK =
⋃
{JAK | A ∈ Γ}

One-step Rules (specific for each choice of ♥s)

Γ1 . . . Γn

Γ0
∼

property of states

property of successors
∼

JΓ1K ∩ · · · ∩ JΓnK ⊆ X

JΓ0K ⊆ TX

where

• Γ1, . . . ,Γn ⊆ V ∪ ¬V are propositional over a set V of variables

• Γ0 ⊆ {♥(p1, . . . , pn) | ♥ n-ary} ∪ {¬♥(p1, . . . , pn) | ♥ n-ary}

Crucial: need Coherence Conditions between proof rules and semantics

May 26, 2010 16



Organic Modalities: Coherence Conditions

Consider a setX and a valuation τ : V → P(X).

Coherence: matching between rules and semantics at one-step level

Propositional Sequents Γ ⊆ V ∪ ¬V

Γ τ -valid ⇐⇒ JΓKτ = X where JpKτ = τ(p)

Modalised Sequents Γ ⊆ {±♥(p1, . . . , pn) | ♥ n-ary}

Γ τ -valid ⇐⇒ JΓKτ = TX where J♥(p1, . . . , pn)Kτ = J♥K(τ(p1), . . . , τ(pn))

where ± indicates possible negation.

Coherence relates τ -validity of premises with τ -validity of conclusions
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Organic Modalities: Coherence Conditions

One-Step Soundness of a set R of one-step rules: for all τ : V → P(X)

Γ1, . . . ,Γn τ -valid =⇒ Γ0 τ -valid

for all Γ1 . . .Γn/Γ0 ∈ R

One-Step Completeness of a set R of one-step rules: for all τ : V → P(X)

Γ τ -valid =⇒ ∃
Γ1 . . .Γn

Γ0
∈ R (Γiσ τ -valid and Γ0σ ⊆ Γ)

for some renaming σ : V → V , for all Γ ⊆f {±♥(p1, . . . , pn) | ♥ n-ary}.

Thm. [P, 2003, Schröder 2007] One-step soundness and one-step completeness

imply soundness and (cut-free) completeness, respectively, when augmented with

propositional reasoning.
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Organic Logics for Multisets

Proof Rules for BX = {µ : X → N | supp(f) finite}

Modal Operators

Λ = {Lp(c1, . . . , cm) | n ∈ N, p1, . . . , pm ∈ Z}

Intended Meaning.

JLp(c1, . . . , cm)K(S1, . . . , Sm) = {µ ∈ BX |
m∑

j=1

cj · µ(Sj) ≥ p}

Sound and Complete Proof Rules. (subject to arith. side condition)

∑n
i=1 ri ·

∑mi

j=1 c
j
ia

j
i ≥ 0

{sg(ri)Lpi
(ci1, . . . , c

i
mi

)(a1
i , . . . , a

mi

i ) | i = 1, . . . , n}

• sg(r)A = A if r > 0 and sg(r)A = ¬A if r < 0

• premise reflects arithmetic of characteristic functions as propositional formula
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Part IV: Automated Reasoning in Coalgebraic Logics

or:

How do I mechanise satisfiability?
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Synthetic: Automata for Modal Formulas

Idea. Formulas φ↔ Automata Aφ so that

(c, C) |= φ ⇐⇒ A accepts (c, C)

where C = (C, γ) is a T -coalgebra and c ∈ C .

Satisfiability checking via automata: φ satisfiable ⇐⇒ L(Aφ) 6= ∅

Coalgebra Automata are tuples A = (A, ai,∆,Ω) where

• A is a finite set of states and aI ∈ A is initial

• ∆ : A→ PP(TA) is the transition function

• Ω : A→ N is a parity function

(we think of these automata as alternating due to layering of P )
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Acceptance via Parity Games

Given. A = (A, ai,∆,Ω) and state c of T -coalgebra (C, γ).

Acceptance. A accepts c if ∃ has a winning strategy from (aI , c) on the board

B = (A× C) ∪ (TA× TC) ∪ (PTA× C) ∪ P(A× C

where legal moves are as follows:

Position Player Moves Priority

(a, c) ∈ A × C ∃ {(Ξ, c) ∈ P(TA) × C | Ξ ∈ ∆(a)} Ω(a)

(Ξ, c) ∈ PT (A) × C ∀ {(ξ, τ) ∈ TA × TC | ξ ∈ Ξ, τ = γ(c)} 0

(ξ, τ) ∈ TA × TC ∃ {Z ∈ P(A × C) | (ξ, τ) ∈ TZ} 0

Z ∈ P(A × C) ∀ Z 0

Intuition. (Recall ∆ : A→ PPTA)

• ∆(a) ∼ formula in DNF: ∃ chooses disjunct, ∀ chooses element

• ’modal’ steps lift acceptance relation and attract priorities
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Automata and Fixpoint Logic

Modal Language. Positive Logic + ∇ + fixpoint formulas

µL ::= x | ⊤ | ⊥ | φ ∧ ψ | φ ∨ ψ | ∇α | µx.φ | νx.φ

where α ∈ TωL and x ∈ V is a variable.

Semantics. As before, with µ/ν interpreted as least/greatest fixpoints.

Thm. [Venema, 2008] For every φ ∈ µL there exists Aφ such that

Aφ accepts (c, C) ⇐⇒ c |= φ

and vice versa. That is: Automata are Formulas are Automata.

Intuition.

• loops in the automaton ∼ unfolding of fixpoints

• parity condition: only finite unfoldings of least fixpoints
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Organic: Tableau Calculi

Here. Easier to use Tableaux than Sequent Calculi

Formulas.

L ∋ A,B ::= p | p | A ∧B | A ∨B | ♥(A1, . . . , An) | ηp.A

where ♥ is n-ary and η ∈ {µ, ν}

Tableau Sequents. Finite sets of formulas Γ = {A1, . . . , An} read conjunctively

Tableau Rules. As before, with modal rules dualised

Γ;A ∧B

Γ;A;B

Γ;A ∨B

Γ;A Γ;B

Γ; ηp.A

Γ;A[p := ηp.A]

Γ0σ,∆

Γ1σ . . .Γnσ

Γ, A,A

Remarks.

• Expansion only ever creates finitely many formulas

• No distinction between least and greatest fixpoints
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Satisfiability via Games

As before. Two-Player Parity Games

• every board position b has a priority Ω(b)

• ∃ wins (and ∀ looses) a play if largest infinitely occurring priority is even

• unfolding of least fixpoints gives odd priorities

Model Checking Game

• modal satisfiability game

• played on state/formula pairs

• unfolding of fixpoints

Tableaux Game

• played on sequents and rules

• ∀ chooses rule

• ∃ chooses conclusion

Thm. [Cîrstea, Kupke, P 2009] A formula is satisfiable if it has a closed tableau.
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Part V: Other Aspects of Coalgebraic Logics

or:

What is there that I didn’t comment on?
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Other Aspects

Coalgebraic Logics, Categorically.

• Logics via Adjunctions

[Klin, Kurz, Jacobs, Sokolova]

• Logics via Presentations

[Bonsangue, Kurz]

Compositionality

• Logics for Composite Functors

[Cîrstea, P, Schröder]

Proof Theory.

• Sequents for ∇

[Bílková, Palmigiano, Venema]

• Interpolation [P, Schröder]

Synthetic vs Organic.

• back and forth [Leal]

Complexity.

• via Tableaux

[Cîrstea, Kupke, Schröder, P]

Extensions of Set-based logics.

• Hybridisation

[Myers,Kupke,P,Schröder]

• Global Consequence

[Goré,Kupke,P]

• Path-Based Logics [Cîrstea]
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Part VI: Perspectives

or:

What should we think about in the future?
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Some Biased Food for Thought

Coalgebraic Logics are Feature-Rich, Compositional and Decdiable

Strategic.

• Implement: Demonstrate techniques on non-trivial problems

• Apply: Use coalgebraic logics in modelling and verification

Technical.

• Understand: relationship between Tableaux and Automata

• Deepen: (Automated) reasoning with frame conditions

Conceptual.

• Generalise: How about e.g. MV-algebras modelling uncertainty?

• Learn: Adapt ILP Techniques to enable machine learning
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Last Part: Questions

and:

Thanks for your attention!
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