
Generic Infinite Traces
and

Path-Based Coalgebraic Temporal Logics

Corina Ĉırstea

School of Electronics and Computer Science
University of Southampton

Overview

• several known path-based temporal specification logics:

• CTL* on transition systems

• PCTL on probabilistic transition systems

• similarities not sufficiently understood/exploited

Goals:

• find a unifying pattern (need infinite computation paths)

• existing general theory of finite traces [Hasuo et. al.]

• existing definition of infinite traces for T = P [Jacobs ’04]

• automatically derive new path-based temporal logics

Restricted Transition Systems

• restricted transition systems are P+-coalgebras

(P+(S) = set of non-empty subsets of S)

Example

?>=<89:;s2

��
{fail}

?>=<89:;s0 // ?>=<89:;s1

{try}

II

99ssssssss

%%KKKKKKKK

?>=<89:;s3
II

{succ}

Some computation paths from s0:

s0 → s1 → s1 . . .

s0 → s1 → s2 → s0 → s1 → s2 . . .

s0 → s1 → s3 → s3 . . .

• to each state, one associates a set of computation paths

The Logic CTL*

• path formulas: ϕ ::= φ | ¬ϕ | ϕ ∧ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

• state formulas: φ ::= tt | p | ¬φ | φ ∧ φ | Eϕ | Aϕ

• E and A similar to ♦ and � modalities . . .

Example

?>=<89:;s2

��
{fail}

?>=<89:;s0 // ?>=<89:;s1

{try}

II

99ssssssss

%%KKKKKKKK

?>=<89:;s3
II

{succ}

A F (tryUsucc)

Probabilistic Transition Systems
• probabilistic transition systems are D-coalgebras

(D(S) = set of probability distributions over S)

Example

?>=<89:;s2

1

��
{fail}

?>=<89:;s0
1 // ?>=<89:;s1

{try}

0.01

II

0.01
99ssssssss

0.98 %%KKKKKKKK

?>=<89:;s3

1

II

{succ}

Some computation paths from s0:

s0 → s1 → s1 . . .

s0 → s1 → s2 → s0 → s1 → s2 . . .

s0 → s1 → s3 → s3 . . .

• to each state, one associates a probability measure on the
computation paths from that state

The Logic PCTL

• path formulas: ϕ ::= Xφ | φU≤tφ t ∈ {0, 1, . . .} ∪ {∞}

• state formulas: φ ::= tt | p | ¬φ | φ ∧ φ | [ϕ]≥q | [ϕ]>q

Example

?>=<89:;s2

1

��
{fail}

?>=<89:;s0
1 // ?>=<89:;s1

{try}

0.01

II

0.01
99ssssssss

0.98 %%KKKKKKKK

?>=<89:;s3

1

II

{succ}

[ttU≤3fail]<0.1

[(tryUsucc)]≥1

More Examples

• (restricted) labelled transition systems (LTSs) are
P+(A×Id)-coalgebras

• generative probabilistic transition systems (GPTSs) are
D(A×Id)-coalgebras

For both LTSs and GPTSs, computation paths have the form

s0
a0 // s1

a1 // s2
a2 // . . .

whereas infinite computation traces have the form

a0 a1 a2 . . .

What LTSs and GPTSs have in common is the inner part of the signature
functor: A× Id.

The General Setting

Similarly to [Hasuo et. al.], we focus on T ◦ F -coalgebras, where:

• strong monad T : C→ C describes the computation type

e.g. P+, D

• functor F : C→ C describes the transition type

• require final sequence of F to stabilise at ω

e.g. Id, A× Id, 1 + A× Id

• distributive law λ : F ◦T ⇒ T ◦ F (compatible with monad structure)
is fixed

Towards Infinite Traces

• the possible infinite traces for both LTSs and GPTSs are elements of
Aω (the final A× -coalgebra):

Aω

tth h h h h h h h h h h h h

uuk k k k k k k k k

{{w
w

w
w

1 Aoo A× Aoo . . .oo

• for an LTS/GPTS (S , γ), the actual infinite traces should be
structured according to the computation type:

trγ : S → P+(Aω) or trγ : S → D(Aω)

Defining the Infinite Trace Map (for LTSs)

Fix an LTS γ : S → P+(A×S).

S
trγ

//____________________

γ0

��

γ1

$$HHHHHHHHHHHH
γ2

**TTTTTTTTTTTTTTTTTTTTTTTT P+(Aω)

rrffffffffffffffffffffffffffffffffffffff

ttiiiiiiiiiiiiiiiiiiiiiiiii

xxrrrrrrrrrrrr

P+(1) P+(A)oo P+(A× A)oo . . .

Define trγ : S → P+(Aω) from its finite approximants γi .

For existence of trγ , we need:

• γi ’s define cone

• P+(Aω) weakly limiting

Defining the Approximants (for LTSs)

?>=<89:;s2

b

��?>=<89:;s0
a // ?>=<89:;s1

c

II

a ::ttttt

b
$$JJJJJ

?>=<89:;s3

c

II

γ : S → P+(S)

γ(s0) = {(a, s1)}
γ(s1) = {(a, s2), (b, s3), (c , s1)}
γ(s2) = {(b, s0)}
γ(s3) = {(c , s3)}

• one application of γ gives

γ1(s1) = {a, b, c}

• two applications of γ followed by some “flattenning” (use of
distributive law) give

γ2(s1) = {ab, bc, ca, cb, cc}

• . . .

A Problem . . . and its Solution

S
trγ

//____________________

γ0

��

γ1

$$HHHHHHHHHHHH
γ2

**TTTTTTTTTTTTTTTTTTTTTTTT P+(Aω)

P+(1) P+(A)oo P+(A× A)oo . . .oo

• in general, there are several choices for the infinite trace map . . .

• . . . but there is a canonical (maximal) one, assuming:

• dcpo v on S → P+(Z)

• mediating maps form directed set

• the trace map can be defined for a general coalgebraic type T ◦ F
(subject to reasonable constraints)

From Infinite Traces to Infinite Executions

• view P+(A×)-coalgebra:

?>=<89:;s2

b

��?>=<89:;s0
a // ?>=<89:;s1

c

II

a ::ttttt

b
$$JJJJJ

?>=<89:;s3

c

II

as P+(S × A×):

?>=<89:;s2

s2,b

��?>=<89:;s0
s0,a // ?>=<89:;s1

s1,c

II

s1,a ::ttttt

s1,b

$$JJJJJ

?>=<89:;s3

s3,c

II

• obtain an infinite execution map execγ : S → (S × A)ω as the infinite
trace map of the new coalgebra !!

“Infinite” Executions: Examples

Take T = P+.

• F = (restricted TSs):
s0 s1 s2 . . .

• F = A× (restricted LTSs):

s0 a1 s1 a2 s2 . . .

• F = 1 + A× (LTSs):

s0 a1 s1 a2 s2 . . . or s0 a1 s1 . . . sn

The Case of Probabilistic Systems

Example

?>=<89:;s2

1

��
{fail}

?>=<89:;s0
1 // ?>=<89:;s1

{try}

0.01

II

0.01
99ssssssss

0.98 %%KKKKKKKK

?>=<89:;s31

ZZ
{succ}

• working with T = D over sets does not work:

• probability measures needed to deal with uncountably many traces

⇒ need to work with T = G (the Giry monad) over measurable
spaces

• resulting infinite trace map takes states to probability measures over
infinite traces

Coalgebra Structure on Infinite Executions

Fix a P+(A×)-coalgebra (S , γ).

The possible infinite executions have S × (A×)-coalgebra structure.

Hence, one can extract from each infinite execution

• the first state,

• an A× -observation.

Towards Coalgebraic Path-Based
Temporal Logics

• coalgebraic types come equipped with modal languages

• e.g. for T = P+, the language has modal operators � and ♦:

• s |= �φ iff s ′ |= φ for all s ′ s.t. s → s ′

• s |= ♦φ iff s ′ |= φ for some s ′ s.t. s → s ′

• e.g. for F = A× , the language has modal operators a and X:

• s |= a iff s → (a, s ′)

• s |= Xφ iff s → (a, s ′) and s ′ |= φ

• our coalgebras have type T ◦ F , so we make use of the above . . .

. . . but with a non-standard interpretation of � and ♦!

Path-Based Fixpoint Logics (for TSs)

T = P+ with monotone �,♦

F = Id with monotone X

ϕ ::= tt | ff | pF | φ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | µpF .ϕ | νpF .ϕ

φ ::= tt | ff | p | φ ∧ φ | φ ∨ φ | �ϕ | ♦ϕ

Given T ◦ F -coalgebra (S , γ) and suitable valuations (for pF and p),
interpret

• path formulas ϕ as sets of paths

• use S×F -coalgebra structure on Sω to interpret φ and Xϕ

• state formulas φ as sets of states

• use infinite execution map execγ : S → P+(Sω) to interpret �ϕ, ♦ϕ

General Path-Based Fixpoint Logics

Fix

• base category C with U : C→ Set

• functor P : C → Set
op

specifying admissible predicates

• assume PC ⊆ PUC is a complete lattice

• functors T and F with monotone modal operators Λ and ΛF , resp.

Definition (Path-Based Fixpoint Language Syntax)

ϕ ::= tt | ff | pF | φ | ϕ ∧ ϕ | ϕ ∨ ϕ | [λF]ϕ | µpF .ϕ | νpF .ϕ

φ ::= tt | ff | p | φ ∧ φ | φ ∨ φ | [λ]ϕ

• semantics as expected . . .

Recovering (negation-free) CTL*

Define:

• Xϕ ::= Xϕ

• Fϕ ::= µX .(ϕ ∨ XX)

• Gϕ ::= νX .(ϕ ∧ XX)

• ϕUψ ::= µX .(ψ ∨ (ϕ ∧ XX))

. . .

• Aϕ ::= �ϕ

• Eϕ ::= ♦ϕ

How About LTSs?

T = P+ with modal operators �,♦

F = A× Id with modal operators a (a ∈ A), X

=⇒ ϕ ::= tt | ff | pF | φ | ϕ ∧ ϕ | ϕ ∨ ϕ | a | Xϕ | µpF .ϕ | νpF .ϕ

φ ::= tt | ff | p | φ ∧ φ | φ ∨ φ | �ϕ | ♦ϕ

• CTL* operators defined as before !

• can refer to the next label along a path:

• natural encoding of “a occurs along every path” as

� F a ::= �µX .(a ∨ XX)

• compare above to
µX .(〈 〉tt ∧ [−a]X)

Logics with (Existential) Until Operators

• assume PC ⊆ PUC is a σ-algebra

• replace fixpoint operators with Until operators UL

• L ⊆ ΛF finite set of (disjunction-preserving) predicate liftings

• semantics defined by

LϕULψM =
⋃
i∈ω

LϕU≤i
L ψM

where

ϕU≤0
L ψ ::= ψ

ϕU≤i+1
L ψ ::= ψ ∨ (ϕ ∧

∨
λF∈L

[λF](ϕU≤i
L ψ))

Recovering PCTL as a Fragment

T = D, F = Id

Λ = {Lq}, ΛF = {X}

=⇒ ϕ ::= tt | ff | φ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUXϕ

φ ::= tt | p | ¬φ | φ ∧ φ | Lqϕ

Define:

• Xϕ ::= Xϕ

• ϕUψ ::= ϕUXψ

• [ϕ]≥q ::= Lqϕ

Future Work

• other computational monads

• e.g. the finite multiset monad and graded temporal logics?

• investigate linear fragments of path-based temporal logics

• automata-based model-checking techniques (parameterised by
computation type)

	Infinite Traces and Executions
	Path-Based Temporal Logics

