Generic Infinite Traces and Path-Based Coalgebraic Temporal Logics

Corina Cîrstea

School of Electronics and Computer Science University of Southampton

Overview

- several known path-based temporal specification logics:
 - CTL* on transition systems
 - PCTL on probabilistic transition systems
- similarities not sufficiently understood/exploited

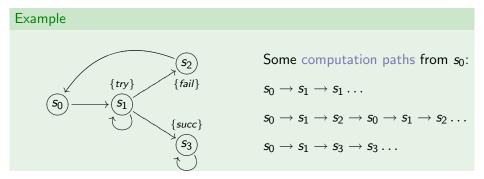
Goals:

- find a unifying pattern (need infinite computation paths)
 - existing general theory of *finite* traces [Hasuo et. al.]
 - existing definition of *infinite* traces for $T = \mathcal{P}$ [Jacobs '04]
- automatically derive new path-based temporal logics

Restricted Transition Systems

• restricted transition systems are \mathcal{P}^+ -coalgebras

 $(\mathcal{P}^+(S) = \text{set of } non-empty \text{ subsets of } S)$



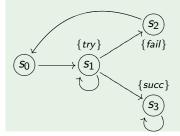
• to each state, one associates a set of computation paths

The Logic CTL*

A F (*try***U***succ*)

- path formulas: $\varphi ::= \phi \mid \neg \varphi \mid \varphi \land \varphi \mid X\varphi \mid F\varphi \mid G\varphi \mid \varphi U\varphi$
- state formulas: $\phi ::= \operatorname{tt} | p | \neg \phi | \phi \land \phi | \mathbf{E} \varphi | \mathbf{A} \varphi$

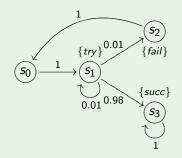
• E and A similar to \Diamond and \Box modalities . . .



Probabilistic Transition Systems

probabilistic transition systems are *D*-coalgebras
 (*D*(*S*) = set of probability distributions over *S*)

Example



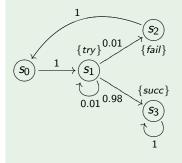
Some computation paths from s_0 : $s_0 \rightarrow s_1 \rightarrow s_1 \dots$ $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_0 \rightarrow s_1 \rightarrow s_2 \dots$ $s_0 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \dots$

 to each state, one associates a probability measure on the computation paths from that state

The Logic PCTL

- path formulas: $\varphi ::= \mathsf{X}\phi \mid \phi \mathsf{U}^{\leq t}\phi \qquad t \in \{0, 1, \ldots\} \cup \{\infty\}$
- state formulas: $\phi ::= \operatorname{tt} | p | \neg \phi | \phi \land \phi | [\varphi]_{\geq q} | [\varphi]_{\geq q}$

Example



 $[tt U^{\leq 3} fail]_{<0.1}$ $[(try Usucc)]_{\geq 1}$

More Examples

- (restricted) labelled transition systems (LTSs) are $\mathcal{P}^+(A \times Id)$ -coalgebras
- generative probabilistic transition systems (GPTSs) are $\mathcal{D}(A \times Id)$ -coalgebras

For both LTSs and GPTSs, computation paths have the form

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \cdots$$

whereas infinite computation traces have the form

 $a_0 a_1 a_2 \dots$

What LTSs and GPTSs have in common is the *inner* part of the signature functor: $A \times Id$.

The General Setting

Similarly to [Hasuo et. al.], we focus on $T \circ F$ -coalgebras, where:

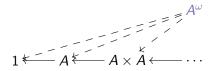
- strong monad $T: C \to C$ describes the computation type e.g. $\mathcal{P}^+, \, \mathcal{D}$
- functor $F : C \rightarrow C$ describes the transition type
 - require final sequence of F to stabilise at ω

e.g. ld, $A \times Id$, $1 + A \times Id$

 distributive law λ : F ∘ T ⇒ T ∘ F (compatible with monad structure) is fixed

Towards Infinite Traces

 the possible infinite traces for both LTSs and GPTSs are elements of A^ω (the final A × _-coalgebra):

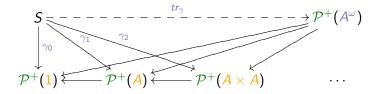


• for an LTS/GPTS (S, γ) , the actual infinite traces should be *structured* according to the computation type:

$$\mathit{tr}_\gamma:S o \mathcal{P}^+(A^\omega) \quad ext{or} \quad \mathit{tr}_\gamma:S o \mathcal{D}(A^\omega)$$

Defining the Infinite Trace Map (for LTSs)

Fix an LTS $\gamma: S \to \mathcal{P}^+(A \times S)$.

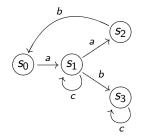


Define $tr_{\gamma}: S \to \mathcal{P}^+(A^{\omega})$ from its finite approximants γ_i .

For existence of tr_{γ} , we need:

- γ_i's define cone
- $\mathcal{P}^+(A^\omega)$ weakly limiting

Defining the Approximants (for LTSs)



$$\begin{split} \gamma: S &\to \mathcal{P}^+(S) \\ \gamma(s_0) &= \{(a, s_1)\} \\ \gamma(s_1) &= \{(a, s_2), (b, s_3), (c, s_1)\} \\ \gamma(s_2) &= \{(b, s_0)\} \\ \gamma(s_3) &= \{(c, s_3)\} \end{split}$$

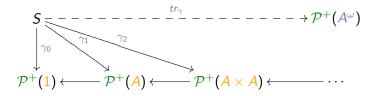
- one application of γ gives

$$\gamma_1(s_1) = \{a, b, c\}$$

- two applications of γ followed by some "flattenning" (use of distributive law) give

$$\gamma_2(s_1) = \{ab, bc, ca, cb, cc\}$$

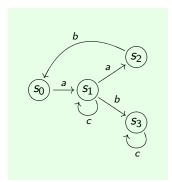
A Problem ... and its Solution



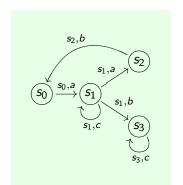
- in general, there are several choices for the infinite trace map
- ... but there is a canonical (*maximal*) one, assuming:
 - dcpo \sqsubseteq on $S \rightarrow \mathcal{P}^+(Z)$
 - mediating maps form directed set
- the trace map can be defined for a general coalgebraic type $T \circ F$ (subject to reasonable constraints)

From Infinite Traces to Infinite Executions

• view $\mathcal{P}^+(A \times _)$ -coalgebra:



as $\mathcal{P}^+(S \times A \times _)$:



obtain an infinite execution map exec_γ : S → (S × A)^ω as the infinite trace map of the new coalgebra !!

"Infinite" Executions: Examples

Take $T = \mathcal{P}^+$.

• $F = _$ (restricted TSs):

*s*₀ *s*₁ *s*₂ . . .

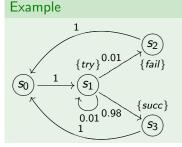
• $F = A \times _$ (restricted LTSs):

 $s_0 a_1 s_1 a_2 s_2 \ldots$

• $F = 1 + A \times (LTSs)$:

 $s_0 a_1 s_1 a_2 s_2 \dots$ or $s_0 a_1 s_1 \dots s_n$

The Case of Probabilistic Systems



- working with T = D over sets does not work:
 - probability measures needed to deal with uncountably many traces

 \Rightarrow need to work with $\mathcal{T}=\mathcal{G}$ (the Giry monad) over measurable spaces

• resulting infinite trace map takes states to probability measures over infinite traces

Coalgebra Structure on Infinite Executions

Fix a $\mathcal{P}^+(A \times _)$ -coalgebra (S, γ) .

The *possible* infinite executions have $S \times (A \times)$ -coalgebra structure.

Hence, one can extract from each infinite execution

- the first state,
- an $A \times _$ -observation.

Towards Coalgebraic Path-Based Temporal Logics

- coalgebraic types come equipped with modal languages
- e.g. for $T = \mathcal{P}^+$, the language has modal operators \Box and \Diamond :

•
$$s \models \Box \phi$$
 iff $s' \models \phi$ for all s' s.t. $s \rightarrow s'$

•
$$s \models \Diamond \phi$$
 iff $s' \models \phi$ for some s' s.t. $s \rightarrow s'$

• e.g. for $F = A \times I$, the language has modal operators a and X:

•
$$s\models a$$
 iff $s
ightarrow (a,s')$

- $s \models X \phi$ iff $s \rightarrow (a, s')$ and $s' \models \phi$
- our coalgebras have type *T* ∘ *F*, so we make use of the above ...
 ... but with a non-standard interpretation of □ and ◊!

Path-Based Fixpoint Logics (for TSs)

- $T = \mathcal{P}^+$ with monotone \Box, \Diamond
- F = Id with monotone X

 $\varphi ::= \operatorname{tt} |\operatorname{ff}| p^{F} |\phi| \varphi \wedge \varphi |\varphi \vee \varphi| X\varphi |\mu p^{F} \varphi |\nu p^{F} \varphi$ $\phi ::= \operatorname{tt} |\operatorname{ff}| p |\phi \wedge \phi |\phi \vee \phi |\Box \varphi |\Diamond \varphi$

Given $T \circ F$ -coalgebra (S, γ) and suitable valuations (for p^F and p), interpret

- path formulas φ as sets of paths
 - use $S \times F$ -coalgebra structure on S^{ω} to interpret ϕ and $X \varphi$
- state formulas ϕ as sets of states
 - use infinite execution map $exec_{\gamma}: S \to \mathcal{P}^+(S^{\omega})$ to interpret $\Box \varphi, \Diamond \varphi$

General Path-Based Fixpoint Logics

Fix

- base category C with $U : C \rightarrow Set$
- functor $P: C \rightarrow Set^{^{op}}$ specifying admissible predicates
 - assume $PC \subseteq PUC$ is a complete lattice
- functors T and F with monotone modal operators Λ and Λ_F , resp.

Definition (Path-Based Fixpoint Language Syntax)

$$\varphi \quad ::= \quad \mathsf{tt} \mid \mathsf{ff} \mid \boldsymbol{p}^{\mathsf{F}} \mid \phi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid [\lambda_{\mathsf{F}}]\varphi \mid \mu \boldsymbol{p}^{\mathsf{F}}.\varphi \mid \nu \boldsymbol{p}^{\mathsf{F}}.\varphi$$

$$\phi \quad ::= \quad \mathrm{tt} \mid \mathrm{ff} \mid p \mid \phi \land \phi \mid \phi \lor \phi \mid [\lambda] \varphi$$

• semantics as expected ...

Recovering (negation-free) CTL*

Define:

- $\mathbf{X}\varphi ::= \mathbf{X}\varphi$
- $\mathbf{F}\varphi ::= \mu X.(\varphi \lor \mathbf{X}X)$
- $\mathbf{G}\varphi ::= \nu X.(\varphi \wedge \mathbf{X}X)$
- $\varphi \mathbf{U} \psi ::= \mu X.(\psi \lor (\varphi \land \mathbf{X} X))$

• $\mathbf{A}\varphi ::= \Box \varphi$

. . .

• $\mathbf{E}\varphi ::= \Diamond \varphi$

How About LTSs?

- $T = \mathcal{P}^+$ with modal operators \Box, \Diamond
- $F = A \times Id$ with modal operators $a \ (a \in A)$, X

 $\implies \varphi ::= \mathsf{tt} \mid \mathsf{ff} \mid p^{\mathsf{F}} \mid \phi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid a \mid \mathsf{X}\varphi \mid \mu p^{\mathsf{F}}.\varphi \mid \nu p^{\mathsf{F}}.\varphi$

 $\phi \quad ::= \quad \mathrm{tt} \mid \mathrm{ff} \mid p \mid \phi \land \phi \mid \phi \lor \phi \mid \Box \varphi \mid \Diamond \varphi$

- CTL* operators defined as before !
- can refer to the *next label along a path*:
 - natural encoding of "a occurs along every path" as

 $\Box Fa ::= \Box \mu X.(a \lor \mathbf{X}X)$

compare above to

 $\mu X.(\langle -\rangle \mathsf{tt} \wedge [-a]X)$

Logics with (Existential) Until Operators

- assume $PC \subseteq PUC$ is a σ -algebra
- replace fixpoint operators with Until operators $_U_{L-}$
 - $L \subseteq \Lambda_F$ finite set of (disjunction-preserving) predicate liftings
- semantics defined by

where

$$\varphi \mathbf{U}_{L}^{\leq 0} \psi \quad ::= \quad \psi$$

$$\varphi \mathbf{U}_{L}^{\leq i+1} \psi \quad ::= \quad \psi \lor (\varphi \land \bigvee_{\lambda_{F} \in L} [\lambda_{F}](\varphi \mathbf{U}_{L}^{\leq i} \psi))$$

Recovering PCTL as a Fragment

 $T = \mathcal{D}, \quad F = \text{Id}$ $\Lambda = \{L_q\}, \quad \Lambda_F = \{X\}$

$$\implies \varphi ::= \operatorname{tt} |\operatorname{ff}| \phi | \varphi \land \varphi | \varphi \lor \varphi | \mathbf{X}\varphi | \varphi \mathbf{U}_{\mathbf{X}}\varphi$$
$$\phi ::= \operatorname{tt} |p| \neg \phi | \phi \land \phi | L_q\varphi$$

Define:

- $\mathbf{X}\varphi ::= \mathbf{X}\varphi$
- $\varphi \mathbf{U} \psi ::= \varphi \mathbf{U}_{\mathbf{X}} \psi$
- $[\varphi]_{\geq q} ::= L_q \varphi$

Future Work

- other computational monads
 - e.g. the finite multiset monad and graded temporal logics?
- investigate linear fragments of path-based temporal logics
 - automata-based model-checking techniques (parameterised by computation type)