Generic Infinite Traces
and
Path-Based Coalgebraic Temporal Logics

Corina Cirstea

School of Electronics and Computer Science
University of Southampton

Overview

e several known path-based temporal specification logics:
o CTL* on transition systems

e PCTL on probabilistic transition systems

e similarities not sufficiently understood/exploited

Goals:
e find a unifying pattern (need infinite computation paths)

e existing general theory of finite traces [Hasuo et. al.]

e existing definition of infinite traces for T = P [Jacobs '04]

e automatically derive new path-based temporal logics

Restricted Transition Systems

e restricted transition systems are P -coalgebras

(P7(S) = set of non-empty subsets of S)

Example

@ Some computation paths from sp:
{try} {fail} SO —>S51 —~>S5...

SO —>S1 S —>5—>S5 —~>S...

@ SO —S1 —S3—S3...

e to each state, one associates a set of computation paths

The Logic CTL*

. formulas: =@ | =0 | oA |] | |
e state formulas: ¢ i=tt|p| =@ | oA |Es| A

e E and A similar to ¢ and [0 modalities . ..

Example

@ A F (tryUsucc
{try} {fail’}

Probabilistic Transition Systems
e probabilistic transition systems are D-coalgebras

(D(S) = set of probability distributions over S)

Example
1 Some computation paths from sp:
. : SO —S1L—S1-..
()L pain 0 = 517 81
% So —>S8 —>S —>5—>85 —~5...
=+~)
;»éO.gs {succ} SO —S1 —S3—S3...

e to each state, one associates a probability measure on the
computation paths from that state

The Logic PCTL

° formulas:

GloU e te{0,1,...}U oo}
tt|p| ¢ | oA [2]5q] []5g

e state formulas: ¢ ::=

Example

! @ [tt faill<o0.1
ﬁ{fan} [(tryUsucc)]>1

&)——&)

\
b {succ}
)
~)

—/
1

More Examples

e (restricted) labelled transition systems (LTSs) are
P+ (AxId)-coalgebras

e generative probabilistic transition systems (GPTSs) are
D(AxId)-coalgebras

For both LTSs and GPTSs, computation paths have the form
BN N i N
whereas infinite computation traces have the form

apdiaz...

What LTSs and GPTSs have in common is the part of the signature
functor:

The General Setting

Similarly to [Hasuo et.al.], we focus on T o /-coalgebras, where:

e strong monad T : C — C describes the computation type
eg. PT, D

e functor describes the transition type

o require final sequence of F to stabilise at w

e.g. Id, ,

e distributive law A : F o T = T o/ (compatible with monad structure)
is fixed

Towards Infinite Traces

e the possible infinite traces for both LTSs and GPTSs are elements of
A“ (the final -coalgebra):

e for an LTS/GPTS (S,7), the actual infinite traces should be
structured according to the computation type:

try: S — PH(AY) or tr,:S — D(AY)

Defining the Infinite Trace Map (for LTSs)

Fix an LTS v : S — P (A~ S).

PHA) P4 A)

Define tr, : S — P (A“) from its finite approximants ;.

For existence of tr,, we need:
e ,'s define cone

o PT(A“) weakly limiting

Defining the Approximants (for LTSs)

@ v:S§—PH(S)

N ’Y(SO) {(3751)}
@\" Ws) = {(a:%).(b;s3). (c. 1)}

¢ @ Ws2) = {(b.so)}

— Y(ss) = {(c,s3)}

e one application of v gives

71(51) - {37 b, C}

e two applications of v followed by some “flattenning” (use of
distributive law) give

v2(s1) = {ab, bc, ca, cb, cc}

A Problem ...and its Solution

PH(1) e PH(A) = PH(A x A) -

e in general, there are several choices for the infinite trace map ...

e ... but there is a canonical (maximal) one, assuming:
e dcpo Con S — PH(2)

e mediating maps form directed set

e the trace map can be defined for a general coalgebraic type T o
(subject to reasonable constraints)

From Infinite Traces to Infinite Executions

o view P ()-coalgebra: as P(S):

e obtain an infinite execution map exec, : S — (S x A)* as the infinite
trace map of the new coalgebra !

“Infinite” Executions: Examples

Take T =P .
. (restricted TSs):
S0S1S52 ...
. (restricted LTSs):
Spdi1si1a2sy ...
. (LTSs):

S0d1S51a2% ... or 504151 -.- S5n

The Case of Probabilistic Systems

Example

e working with T = D over sets does not work:
e probability measures needed to deal with uncountably many traces

= need to work with T = G (the Giry monad) over measurable
spaces

e resulting infinite trace map takes states to probability measures over
infinite traces

Coalgebra Structure on Infinite Executions

Fix a P ()-coalgebra (S, 7).
The possible infinite executions have S -coalgebra structure.

Hence, one can extract from each infinite execution
e the first state,

e an -observation.

Towards Coalgebraic Path-Based
Temporal Logics

coalgebraic types come equipped with modal languages

e.g. for T = P, the language has modal operators [] and ¢:
o sE=Lp iff s'E=¢foralls’st. s—s¢
o sEO¢ iff s'|=¢forsomes’ st s—s

e.g. for , the language has modal operators 2 and
e skEa iff s—(a,¢)
o sk=X¢ iff s—(a,s') and s’ = ¢

our coalgebras have type T o I, so we make use of the above ...

... but with a non-standard interpretation of [l and {!

Path-Based Fixpoint Logics (for TSs)

T = P with monotone [, {
with monotone
n= [] |l enp|evel Xe|up e vp’.
¢ = tt[ff|plonglove | |0
Given T o /-coalgebra (S,~) and suitable valuations (for p© and p),

interpret

° as sets of paths

e use S <[-coalgebra structure on to interpret ¢ and

e state formulas ¢ as sets of states

e use infinite execution map exec, : S — PT(5%) to interpret Lo, O

General Path-Based Fixpoint Logics
Fix
e base category C with U : C — Set
e functor P : C — Set”” specifying admissible predicates

e assume PC C PUC is a complete lattice
e functors T and / with monotone modal operators A and /\r, resp.
Definition (Path-Based Fixpoint Language Syntax)
F
n= tt|ff]pT |dleAp|eVel | pp” .

¢ == tt|ff|p|lodAnd]|oVael|l[N]

e semantics as expected ...

Recovering (negation-free) CTL*

Define:

How About LTSs?
T = P* with modal operators [, {)

with modal operators = (),
— s= [gl enplevelal Xe | uple|vp e

¢ tt[fflploAndleve|Do]O

e CTL* operators defined as before !
e can refer to the next label along a path:
e natural encoding of “a occurs along every path” as
OFa == 0

e compare above to
pX.((Ott A [—a]lX)

Logics with (Existential) Until Operators

e assume PC C PUC is a o-algebra

e replace fixpoint operators with Until operators U _

e | C Af finite set of (disjunction-preserving) predicate liftings

e semantics defined by

—
U, U[’
where
<0 o
U; =
<i+1 e <i
U; = U;

Recovering PCTL as a Fragment

T =D,
/\:{Lq}v
= s= ottt ff o] oA oV |
¢ = tt|p[-dloAd]|Lg
Define:
o Xy =
o U =

Future Work

e other computational monads
e e.g. the finite multiset monad and graded temporal logics?

e investigate linear fragments of path-based temporal logics

e automata-based model-checking techniques (parameterised by
computation type)

	Infinite Traces and Executions
	Path-Based Temporal Logics

