Probabilistic Systems Coalgebraically

Ana Sokolova University of Salzburg

CMCS 2010, Paphos, 26.3.2010

We will discuss

- probabilistic systems

6 their modelling as coalgebras

- coalgebraic results for probabilistic systems

We will discuss

- probabilistic systems
- their modelling as coalgebras
- coalgebraic results for probabilistic systems

We will discuss

- probabilistic systems
- their modelling as coalgebras
- coalgebraic results for probabilistic systems

Major distinction

- Discrete systems discrete probability distributions
- Continuous systems continuous state space/continuous measures

Major distinction

- Discrete systems
 discrete probability distributions
- Continuous systems continuous state space/continuous measures

Major distinction

- Discrete systems discrete probability distributions
- Continuous systems continuous state space/continuous measures

Major distinction

- Discrete systems
 continuous state space/continuous measures

Major distinction

- Discrete systems
 discrete probability distributions
- Continuous systems continuous state space/continuous measures

Part 1

Discrete probabilistic systems

Modelling discrete probabilistic systems

Probability distribution functor on Sets

$$
\mathcal{D}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x)=1\right\}
$$

for
$f: X \rightarrow Y$ we have $D(f)$ $\mathcal{D}(X) \rightarrow \mathcal{D}(Y)$

$$
\mathcal{D}(f)(\mu)(y)=\sum_{x \in f^{-1}(y)} \mu(x)=\mu\left(f^{-1}(y)\right)
$$

Modelling discrete probabilistic systems

Probability distribution functor on Sets

$$
\mathcal{D}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x)=1\right\}
$$

for $f \quad X \rightarrow Y$ we have $\mathcal{D}(f): \mathcal{D}(X) \rightarrow \mathcal{D}(Y)$
preserves weak pullbacks

$$
\mathcal{D}(f)(\mu)(y)=\sum_{x \in f^{-1}(y)} \mu(x)=\mu\left(f^{-1}(y)\right)
$$

Modelling discrete probabilistic systems

Probability distribution functor on Sets

$$
\mathcal{D}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x)=1\right\}
$$

and its variants

$$
\begin{aligned}
& \mathcal{D}_{\leq 1}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x) \leq 1\right\} \\
& \mathcal{D}_{f}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x)=1, \operatorname{supp}(\mu) \text { is finite }\right\}
\end{aligned}
$$

Modelling discrete probabilistic systems

Probability distribution functor on Sets

$$
\mathcal{D}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x)=1\right\}
$$

and its variants

$$
\begin{aligned}
& \mathcal{D}_{\leq 1}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x) \leq 1\right\} \\
& \mathcal{D}_{f}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x)=1, \operatorname{supp}(\mu) \text { is finite }\right\}
\end{aligned}
$$

Modelling discrete probabilistic systems

Probability distribution functor on Sets

$$
\mathcal{D}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x)=1\right\}
$$

and its variants

$$
\mathcal{D}_{\leq 1}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum_{x \in X} \mu(x) \leq 1\right\} \quad\{x \in X \mid \mu(x)>0\}
$$

$$
\mathcal{D}_{f}(X)=\left\{\mu: X \rightarrow[0,1] \mid \sum \mu(x)=1, \operatorname{supp}(\mu) \text { is finite }\right\}
$$ has a final coalgebra

Modelling discrete probabilistic systems

Markov chains are \mathcal{D}-coalgebras on Sets

$$
X \xrightarrow{c} \mathcal{D}(X)
$$

Modelling discrete probabilistic systems

Markov chains are \mathcal{D}-coalgebras on Sets

$$
X \xrightarrow{c} \mathcal{D}(X)
$$

How about their coalgebraic bisimilarity?

Modelling discrete probabilistic systems

Markov chains are \mathcal{D}-coalgebras on Sets

$$
X \xrightarrow{c} \mathcal{D}(X)
$$

How about their coalgebraic bisimilarity?

Modelling discrete probabilistic systems

Markov chains are \mathcal{D}-coalgebras on Sets

$$
X \xrightarrow{c} \mathcal{D}(X)
$$

How about their coalgebraic bisimilarity?
Coincides with Larsen\&Skou bisimilarity de Vink\&Rutten '99

Modelling discrete probabilistic systems

Markov chains are \mathcal{D}-coalgebras on Sets

$$
X \xrightarrow{c} \mathcal{D}(X)
$$

How about their coalgebraic bisimilarity?
Coincides with Larsen\&Skou bisimilarity
$x R y \Rightarrow c(x)(C)=c(y)(C)$
C - equivalence class of R

Modelling discrete probabilistic systems

Markov chains are \mathcal{D}-coalgebras on Sets

$$
X \xrightarrow{c} \mathcal{D}(X)
$$

How about their coalgebraic bisimilarity?
Coincides with Larsen\&Skou bisimilarity
$x R y \Rightarrow c(x)(C)=c(y)(C)$
$x R y \Rightarrow c(x) \equiv_{R} c(y)$

Other discrete systems

Other discrete systems

- Markov chains have trivial bisimilarity, the final coalgebra is trivial

Other discrete systems

- Markov chains have trivial bisimilarity, the final coalgebra is trivial
- It gets more interesting with labels, termination, nondeterminism

Other discrete systems

- Markov chains have trivial bisimilarity, the final coalgebra is trivial
- It gets more interesting with labels, termination, nondeterminism
- (Almost) all known probabilistic systems can be modelled as coalgebras of functors built by the grammar

Other discrete systems

- Markov chains have trivial bisimilarity, the final coalgebra is trivial
- It gets more interesting with labels, termination, nondeterminism
- (Almost) all known probabilistic systems can be modelled as coalgebras of functors built by the grammar

$$
F:=-|A| \mathcal{D}|\mathcal{P}| F^{A}|F+F| F \times F \mid F \circ F
$$

Discrete system types

MC	\mathcal{D}
DLTS	$(-1)^{A}$
LTS	$\mathcal{P}\left(A \times_{-\bar{A}}\right) \cong \mathcal{P}^{A}$
React	$(\mathcal{D}+1)^{A}$
Gen	$\mathcal{D}\left(A \times_{-}\right)+1$
Str	$\mathcal{D}+\left(A \times_{-}\right)+1$
Alt	$\mathcal{D}+\mathcal{P}\left(A \times_{-}\right)$
Var	$\mathcal{D}\left(A \times_{-}\right)+\mathcal{P}\left(A \times_{-}\right)$
SSeg	$\mathcal{P}(A \times \mathcal{D})$
Seg	$\mathcal{P} \mathcal{D}\left(A \times_{-}\right)$
\ldots	\ldots

Discrete system types

MC	\mathcal{D}
DLTS	$(-1)^{A}$
LTS	$\mathcal{P}\left(A \times_{-}\right) \cong \mathcal{P}^{A}$
React	$(\mathcal{D}+1)^{A}$
Gen	$\mathcal{D}\left(A \times_{-}\right)+1$
Str	$\mathcal{D}+\left(A \times_{-}\right)+1$
Alt	$\mathcal{D}+\mathcal{P}\left(A \times_{-}\right)$
Var	$\mathcal{D}\left(A \times_{-}\right)+\mathcal{P}\left(A \times_{-}\right)$
SSeg	$\mathcal{P}(A \times \mathcal{D})$
Seg	$\mathcal{P} \mathcal{D}\left(A \times_{-}\right)$
\ldots	\ldots

Discrete system types

MC	\mathcal{D}
DLTS	$(-+1)^{A}$
LTS	$\mathcal{P}\left(A \times-\overline{x^{A}}\right) \cong \mathcal{P}^{A}$
React	$(\mathcal{D}+1)^{A}$
Gen	$\mathcal{D}(A \times-1$
Str	$\mathcal{D}+\left(A \times_{-}\right)+1$
Alt	$\mathcal{D}+\mathcal{P}\left(A \times_{-}\right)$
Var	$\mathcal{D}\left(A \times-\mathcal{P}\left(A \times_{-}\right)\right.$
SSeg	$\mathcal{P}(A \times \mathcal{D})$
Seg	$\mathcal{P} \mathcal{D}\left(A \times_{-}\right)$
\ldots	\ldots

Discrete system types

MC	\mathcal{D}
DLTS	$(-1)^{A}$
LTS	$\mathcal{P}\left(A \times_{-}\right) \cong \mathcal{P}^{A}$
React	$(\mathcal{D}+1)^{A}$
Gen	$\mathcal{D}\left(A \times_{-}\right)+1$
Str	$\mathcal{D}+\left(A \times_{-}\right)+1$
Alt	$\mathcal{D}+\mathcal{P}\left(A \times_{-}\right)$
Var	$\mathcal{D}\left(A \times_{-}\right)+\mathcal{P}\left(A \times_{-}\right)$
SSeg	$\mathcal{P}(A \times \mathcal{D})$
Seg	$\mathcal{P} \mathcal{D}\left(A \times_{-}\right)$
\ldots	\ldots

Discrete system types

MC	\mathcal{D}
DLTS	$(-1)^{A}$
LTS	$\mathcal{P}\left(A \times_{-}\right) \cong \mathcal{P}^{A}$
React	$(\mathcal{D}+1)^{A}$
Gen	$\mathcal{D}\left(A \times_{-}\right)+1$
Str	$\mathcal{D}+\left(A \times_{-}\right)+1$
Alt	$\mathcal{D}+\mathcal{P}\left(A \times_{-}\right)$
Var	$\mathcal{D}\left(A \times_{-}\right)+\mathcal{P}\left(A \times_{-}\right)$
SSeg	$\mathcal{P}(A \times \mathcal{D})$
Seg	$\mathcal{P} \mathcal{D}\left(A \times_{-}\right)$
\ldots	\ldots

Discrete system types

MC	\mathcal{D}
DLTS	$(-1)^{A}$
LTS	$\mathcal{P}\left(A \times_{-}\right) \cong \mathcal{P}^{A}$
React	$(\mathcal{D}+1)^{A}$
Gen	$\mathcal{D}\left(A \times_{-}\right)+1$
Str	$\mathcal{D}+\left(A \times_{-}\right)+1$
Alt	$\mathcal{D}+\mathcal{P}\left(A \times_{-}\right)$
Var	$\mathcal{D}\left(A \times_{-}\right)+\mathcal{P}\left(A \times_{-}\right)$
SSeg	$\mathcal{P}(A \times \mathcal{D})$
Seg	$\mathcal{P} \mathcal{D}\left(A \times_{-}\right)$
\ldots	\ldots

Discrete systems

- enter coalgebra, which provides a unifying framework
- become available as examples for generic coalgebra results
- all concrete probabilistic bisimulations (based on Larsen\&Skou bisimulation) coincide with coalgebraic bisimulations Bartels,S.\&deVink '03/'04 S. '05

Discrete systems

- enter coalgebra, which provides a unifying framework
- become available as examples for gene original prootink\&R
coalgebra results
- all concrete probabilistic bisimy ations (based on Larsen\&Skou bisimulation) coincide with coalgebraic bisimulation\%
Bartels,S.\&deVink '03/'04
S. '05

Discrete systems

- enter coalgebra, which provides a unifying framework
- become available as examples for gene de diginkal proof: as in inten coalgebra results
- all concrete probabilistic bisimy ation next version, simpler on Larsen\&Skou bisimulation) coinci With coalgebraic bisimulations Bartels,S.\&deVink '03/'04 S. '05

Discrete systems

- enter coalgebra, which provides a unifying framework
- become available as examples for coalgebra results
- all concrete probabilistic bisimy afion next version, simpler on Larsen\&Skou bisimulations coinci w relation liftings on Larsen\&Skou bisimulatior) coinci wt relation liftings coalgebraic bisimulations
original proof: as in enede Vink\&Rutten Bartels,S.\&deVink '03/'04 S. '05

Discrete systems

- enter coalgebra, which provides a unifying framework
- become available as examples for coalgebra results
- all concrete probabilistic bisimy afion on Larsen\&Skou bisimulation coincil at on Larsen\&Skou bisimulation coinci w relation liftings coalgebraic bisimulations Bartels,S.\&deVink '03/'04 modular, inductive proof S. '05
original proof: as in genede Vink\&Rutten號

Bisimilarity for simple Segala automata

An equivalence R on the states of a simple Segala automaton
 is a bisimulation iff

Bisimilarity for simple Segala automata

An equivalence R on the states of a simple Segala automaton
 is a bisimulation iff

- R

Bisimilarity for simple Segala automata

An equivalence R on the states of a simple Segala automaton is a bisimulation iff

Bisimilarity for simple Segala automata

An equivalence R on the states of a simple Segala automaton is a bisimulation iff

Bisimilarity for simple Segala automata

An equivalence R on the states of a simple Segala automaton is a bisimulation iff

Bisimilarity for simple Segala automata

An equivalence R on the states of a simple Segala automaton is a bisimulation iff

Bisimilarity for simple Segala automata

An equivalence R on the states of a simple Segala automaton is a bisimulation iff

Bisimilarity for simple Segala automata

An equivalence R on the states of a simple Segala automaton is a bisimulation iff

$$
\begin{aligned}
s R t & \Rightarrow\left(s \stackrel{a}{\rightarrow} \mu \Rightarrow(\exists \nu) t \xrightarrow{a} \nu, \mu \equiv_{R} \nu\right) \\
& \Leftrightarrow\langle s, t\rangle \in \operatorname{Rel}(\mathcal{P}(A \times \mathcal{D}))(R)
\end{aligned}
$$

Bisimilarity for simple Segala automata

An equivalence R on the states of a simple Segala automaton

$$
X \rightarrow \mathcal{P}(A \times \mathcal{D}(X))
$$ is a bisimulation iff

$$
\begin{aligned}
s R t & \Rightarrow\left(s \xrightarrow{a} \mu \Rightarrow(\exists \nu) t \xrightarrow{a} \nu, \mu \equiv_{R} \nu\right) \\
& \Leftrightarrow\langle s, t\rangle \in \operatorname{Rel}(\mathcal{P}(A \times \mathcal{D}))(R) \quad \equiv \equiv_{R}=\operatorname{Rel}(\mathcal{D})(R)
\end{aligned}
$$

Expressiveness hierarchy

Expressiveness hierarchy

Expressivity comparison

Theorem If F preserves weak pullbacks and there is an injective natural transformation from F to G, then F -coalgebras $\longrightarrow G$-coalgebras

Expressivity comparison

Theorem If F preserves weak pullbacks and there is an injective natural transformation from F to G, then F -coalgebras \longrightarrow G-coalgebras

1. If there is an injective natural transformation from F to G, then it induces a translation that preserves and reflects behaviour equivalence

Expressivity comparison

Theorem If F preserves weak pullbacks and there is an injective natural transformation from F to G, then F -coalgebras $\longrightarrow \mathrm{G}$-coalgebras
1.

If there is an injective natural
 from F to G, then it induces a transla preserves and reflects behaviour equivalence

Expressivity comparison

Theorem If F preserves weak pullbacks and there is an injective natural transformation from F to G, then F -coalgebras $\longrightarrow \mathrm{G}$-coalgebras

1. If there is an injective natural from F to G, then it induces a transla preserves and reflects behaviour equivalence
2. If F preserves weak pullbacks, then behaviour equivalence and bisimilarity coincide

Expressivity comparison

Theorem If F preserves weak pullbacks and there is an injective natural transformation from F to G, then F -coalgebras $\longrightarrow \mathrm{G}$-coalgebras
1.

If there is an injective natural from F to G, then it induces a translon preserves and reflects behaviour equivalence
2. If F preserves weak pullbacks, then behaviour equivalence and bisimilarity coincide

Expressivity comparison

Theorem If F preserves weak pullbacks and there is an injective natural transformation from F to G, then F -coalgebras $\longrightarrow \mathrm{G}$-coalgebras

1. If there is an injective natural from F to G, then it induces a translar. preserves and reflects behaviour equivalence
2. If F preserves weak pullbacks, then behaviour equivalence and bisimilarity coincide

Example embedding

simple Segala system

$$
\mathcal{P}(A \times \mathcal{D})
$$

Segala system

$$
\mathcal{P D}\left(A \times{ }_{-}\right)
$$

Example embedding

simple Segala system

$$
\mathcal{P}(A \times \mathcal{D})
$$

\qquad

Segala system

$$
\mathcal{P D}\left(A \times{ }_{-}\right)
$$

Example embedding

simple Segala system

$$
\mathcal{P}(A \times \mathcal{D})
$$

Segala system

$$
\mathcal{P D}\left(A \times{ }_{-}\right)
$$

Basic natural

transformations

- $\eta: 1 \Rightarrow \mathcal{P}$ with $\eta_{X}(*):=\emptyset$,
- $\sigma:_{-} \Rightarrow \mathcal{P}$ with $\sigma_{X}(x):=\{x\}$
- $\delta:{ }_{-} \Rightarrow \mathcal{D}$ with $\delta_{X}(x):=\delta_{x}$ (Dirac),
- $\iota_{l}: \mathcal{F} \Rightarrow \mathcal{F}+\mathcal{G}$ and $\iota_{r}: \mathcal{G} \Rightarrow \mathcal{F}+\mathcal{G}$,
- $\phi+\psi: \mathcal{F}+\mathcal{G} \Rightarrow \mathcal{F}^{\prime}+\mathcal{G}^{\prime}$ for
$\phi: \mathcal{F} \Rightarrow \mathcal{F}^{\prime}$ and $\psi: \mathcal{G} \Rightarrow \mathcal{G}^{\prime}$ (both with i.c.),
- $\kappa: \mathrm{A} \times \mathcal{P} \Rightarrow \mathcal{P}\left(\mathrm{A} \times{ }_{-}\right) \quad$ with $\quad \kappa_{X}(a, M):=\{\langle a, x\rangle \mid x \in M\}$,

Specific coalgebra results

Specific coalgebra results

- Probabilistic GSOS Bartels'02/'04 Stochastic/weighted GSOS Klin\&Sassone'08, Klin'09

Specific coalgebra results

- Probabilistic GSOS Bartels'02/'04 Stochastic/weighted GSOS Klin\&Sassone'08, Klin'09
- Monad for probability and nondeterminism (a vicious combination) Varacca'02, Varacca\&Winskel'06

Specific coalgebra results

- Probabilistic GSOS Bartels'02/'04 Stochastic/weighted GSOS Klin\& Klin'09
\mathcal{P}, \mathcal{D} are monads,
but $\mathcal{P D}$ is not
- Monad for probability and nonaeter.... (a vicious combination) Varacca'O2, Varacca\&Winskel'06

Specific coalgebra results

- Probabilistic GSOS Bartels'02/'04 Stochastic/weighted GSOS Klin\& Klin'09
\mathcal{P}, \mathcal{D} are monads,
but $\mathcal{P D}$ is not
- Monad for probability and vonaeter.... (a vicious combination) Varacca'O2, Varacca\&Winskel'06
used for traces of systems with probability and nondeterminism Jacobs'08

Specific coalgebra results

- Probabilistic GSOS Bartels'02/'04 Stochastic/weighted GSOS Klin\& Klin'09
\mathcal{P}, \mathcal{D} are monads,
but $\mathcal{P D}$ is not
- Monad for probability and nomaeter....
(a vicious combination) Varacca'O2, Varacca\&Winskel'06
used for traces of systems with probability and nondeterminism Jacobs'08
- Probabilistic anonymity Hasuo\&Kawabe'07

Generic results

Generic results

- Modal logics, also via dual adjunctions

Generic results

- Modal logics, also via dual adjunctions
- Weak bisimulation S.,deVink,Woracek'04/'09

Generic results

- Modal logics, also via dual adjunctions
- Weak bisimulation S.,deVink,Woracek'04/'09
- Generic trace theory (\mathcal{D} is a monad) Hasuo,Jacobs,S.'06/'07

Generic results

- Modal logics, also via dual adjunctions
- Weak bisimulation S.,deVink,Woracek'04/'09
- Generic trace theory (\mathcal{D} is a monad) Hasuo,Jacobs,S.'06/'07
- Forward and backward simulations Hasuo'06

Generic results

- Modal logics, also via dual adjunctions
- Weak bisimulation S.,deVink,Woracek'04/'09
- Generic trace theory (\mathcal{D} is a monad) Hasuo,Jacobs,S.'06/'07
- Forward and backward simulations Hasuo'06
- Syntax and axioms for quantitative behaviors Kleene coalgebras Bonchi, Bonsaque,Rutten,Silva'09

Generic results

Modal logics, also via dual adjunctions

- Weak bisimulation S.,deVink,Woracek'04/'09
- Generic trace theory (\mathcal{D} is a monad) Hasuo,Jacobs,S.'06/'07
- Forward and backward simulations Hasuo'06
- Syntax and axioms for quantitative behaviors Kleene coalgebras Bonchi, Bonsaque,Rutten,Silva'09

Generic results

Modal logics, also via dual adjunctions

- Weak bisimulation S.,deVink,Woracek'04/'09
- Generic trace theory (\mathcal{D} is a monad) Hasuo,Jacobs,S.'06/'07
- Forward and backward simulations Hasuó06
- Syntax and axioms for quantitative behaviors Kleene coalgebras Bonchi, Bonsaque,Rutten,Silva'09

Generic results

Modal logics, also via dual adjunctions

- Weak bisimulation S.,deVink,Woracek'04/'09
- Generic trace theory (\mathcal{D} is a monad) Hasuo,Jacobs,S.'06/'07
- Forward and backward simulations Hasuó06
- Syntax and axioms for quantitative behaviors Kleene coalgebras Bonchi, Bonsaque,Rutten,Silva'09

Probabilities are not that special...

- subsets, multisets and distributions have something in common: they are instances of the same functor

Probabilities are not that special...

- subsets, multisets and distributions have something in common: they are instances of the same functor
- given a monoid $(M,+, 0)$ and a subset $S \subseteq M$

$$
\begin{aligned}
V_{S}(X)= & \left\{\varphi: X \rightarrow M \mid \operatorname{supp}(\varphi) \text { is finite, } \sum_{x \in X} \varphi(x) \in S\right\} \\
& V_{S}(f)(\varphi)(y)=\sum_{x \in f^{-1}(\{y\})} \varphi(x)
\end{aligned}
$$

Probabilities are not that special...

$\mathcal{P}_{f}=V_{S}$ nusets nultisets and distributions have $M=(\{0,1\}, \vee, 0)$ in common: they are instances of
$S=M$ te functor

- given a monoid $(M,+, 0)$ and a subset $S \subseteq M$

$$
\begin{aligned}
V_{S}(X)= & \left\{\varphi: X \rightarrow M \mid \operatorname{supp}(\varphi) \text { is finite, } \sum_{x \in X} \varphi(x) \in S\right\} \\
& V_{S}(f)(\varphi)(y)=\sum_{x \in f^{-1}(\{y\})} \varphi(x)
\end{aligned}
$$

Probabilities are not that special...

$$
\mathcal{P}_{f}=V_{S} \text { besets } \quad \begin{aligned}
& \mathcal{M}_{f}=V_{S} \\
& M=(\mathbb{N}+.0)
\end{aligned} \quad \text { butions have }
$$

$$
\begin{aligned}
& M=(\{0,1\}, \vee, 0) \\
& S=M
\end{aligned} \quad \begin{aligned}
& M=(\mathbb{N},+, 0) \\
& S=M
\end{aligned} \quad \text { are instances of }
$$

- given a monoid $(M,+, 0)$ and a subset $S \subseteq M$

$$
\begin{aligned}
V_{S}(X)= & \left\{\varphi: X \rightarrow M \mid \operatorname{supp}(\varphi) \text { is finite, } \sum_{x \in X} \varphi(x) \in S\right\} \\
& V_{S}(f)(\varphi)(y)=\sum_{x \in f^{-1}(\{y\})} \varphi(x)
\end{aligned}
$$

Probabilities are not that special...

$$
\left.\left.\left.\begin{array}{l}
\mathcal{P}_{f}=V_{S} \text { ubsets } \\
M=(\{0,1\}, \vee, 0) \\
S=M
\end{array}\right\} \begin{array}{l}
\mathcal{M}_{f}=V_{S} \\
M=(\mathbb{N},+, 0) \\
S=M
\end{array}\right\} \begin{array}{l}
\mathcal{D}_{f}=V_{S} \\
M=(\mathbb{R} \geq 0 \\
S=[0,1]
\end{array},+, 0\right)
$$

- given a monoid $(1,+, 0)$ and a subset $S \subseteq M$

$$
\begin{aligned}
V_{S}(X)= & \left\{\varphi: X \rightarrow M \mid \operatorname{supp}(\varphi) \text { is finite, } \sum_{x \in X} \varphi(x) \in S\right\} \\
& V_{S}(f)(\varphi)(y)=\sum_{x \in f^{-1}(\{y\})} \varphi(x)
\end{aligned}
$$

Probabilities are not that special...

$$
\left.\left.\left.\begin{array}{l}
\mathcal{P}_{f}=V_{S} \text { ubsets } \\
M=(\{0,1\}, \vee, 0) \\
S=M
\end{array}\right\} \begin{array}{l}
\mathcal{M}_{f}=V_{S} \\
M=(\mathbb{N},+, 0) \\
S=M
\end{array}\right\} \begin{array}{l}
\mathcal{D}_{f}=V_{S} \\
M=(\mathbb{R} \geq 0 \\
S=[0,1]
\end{array}\right\}
$$

- given a monoid $(1,+, 0)$ and a subset $S \subseteq M$

$$
V_{S}(X)=\left\{\varphi: X \rightarrow M \mid \operatorname{supp}(\varphi) \text { is finite, } \sum_{x \in X} \varphi(x) \in S\right\}
$$

Part 2

Continuous probabilistic systems

Live beyond sets

in Meas

Live beyond sets

Live beyond sets

the category of measure spaces and measurable maps
objects: measure spaces $\left(X, S_{X}\right)$

Live beyond sets

the category of measure spaces and measurable maps
objects: measure spaces $\left(X, S_{X}\right)$

σ-algebra

Live beyond sets

the category of measure spaces
 closed w.r.t.ø, complements, countable unions σ-algebra

Live beyond sets

the category of measure spaces and measurable maps closed w.r.t.ø, complements, countable unions
objects: measure spaces $\left(X, S_{X}\right)$

arrows: measurable maps
 $$
f: X \rightarrow Y \text { with } f^{-1}\left(S_{Y}\right) \subseteq S_{X}
$$

Markov and Giry

- Markov processes are coalgebras of the Giry monad on Meas

Markov and Giry

- Markov processes are coalgebras of the Giry monad on Meas
- The Giry functor (monad) acts on objects and arrows as

Markov and Giry

- Markov processes are coalgebras of the Giry monad on Meas
- The Giry functor (monad) acts on objects and arrows as

$$
\mathcal{G}\left(X, S_{X}\right)=\left(\mathcal{G} X, S_{\mathcal{G} X}\right)
$$

Markov and Giry

- Markov processes are coalgebras of the Giry monad on Meas
- The Giry functor (monad) acts on objects and arrows as

$$
\mathcal{G}\left(X, S_{X}\right)=\left(\mathcal{G} X, S_{\mathcal{G} X}\right)
$$

all subprobability measures

Markov and Giry

- Markov processes are coalgebras of the Giry monad on Meas
- The Giry functor (monad) acts on objects and arrows as

$$
\mathcal{G}\left(X, S_{X}\right)=\left(\mathcal{G} X, S_{\mathcal{G} X}\right)
$$

all subprobability measures

$$
\mathcal{G} X=\left\{\varphi: S_{X} \rightarrow[0,1] \mid \varphi(\emptyset)=0, \varphi\left(\uplus_{i} M_{i}\right)=\sum \varphi\left(M_{i}\right)\right\}
$$

Markov and Giry

- Markov processes are coalgebras of the Giry monad on Meas
- The Giry functor (monad) acts on objects and arrows as

the smallest σ-algebra making the evaluation maps measurable

$$
\begin{aligned}
& e v_{M}: \mathcal{G X} \rightarrow[0,1] \\
& e v_{M}(\varphi)=\varphi(M)
\end{aligned}
$$

$$
\mathcal{G X}=\left\{\varphi: S_{X} \rightarrow[0,1] \mid \varphi(\emptyset)=0, \varphi\left(\uplus_{i} M_{i}\right)=\sum \varphi\left(M_{i}\right)\right\}
$$

Markov and Giry

- Markov processes are coalgebras of the Giry monad on Meas
- The Giry functor (monad) acts on objects and arrows as

Markov and Giry

- Markov processes are coalgebras of the Giry monad on Meas
- The Giry functor (monad) acts on objects and arrows as

$$
\mathcal{G}(f)\left(S_{X} \xrightarrow{\varphi}[0,1]\right)=\left(S_{Y} \xrightarrow{f^{-1}} S_{X} \xrightarrow{\varphi}[0,1]\right)=\varphi(M)
$$

Properties, other spaces

- Meas may not have weak pullbacks
- Analytic spaces have semi-pullbacks Edalat'99
- It has a final coalgebra Moss\&Viglizzó06

Properties,

- Meas may not have weak pullbacks
- Analytic spaces have semi-pullbacks Edalat '99
- It has a final coalgebra Moss\&Viglizzo'06

Properties, $0^{\text {th }}$ bisimilarity is difficult to handle

- Meas may not have weak pullbacks
- Analytic spaces have semi-pullbacks Edalat'99
- It has a final coalgebra Moss\&Viglizzó06

Properties, oth
 bisimilarity is difficult to handle

- Meas may not have weak pullbacks
so people turned to analytic or Polish spaces
- Analytic spaces have semi-pullbacks Edalat '99
- It has a final coalgebra Moss\&Viglizzo'06

Properties, $0^{\text {th }}$ bisimilarity is difficult to handle

- Meas may not have weak pullbacks
so people turned to analytic or Polish spaces
- Analytic spaces have semi-pullbacks Edalat'99
- It has a final coal Moss\&Viglizzo'06

Properties, $0^{\text {th }}$ bisimilarity is difficult to handle

- Meas may not have weak pullbacks
so people turned to analytic or Polish spaces
- Analytic spaces have semi-pullbacks Edalat'99
- It has a final coal Moss\&Viglizzo'06

Properties, $0^{\text {th }}$

bisimilarity is difficult to handle

- Meas may not have weak pullbacks
so people turned to analytic or Polish spaces
- Analytic spaces have semi-pullbacks Edalat '99
- It has a final coal Moss\&Viglizzo'06

CMCS 26.3.2010

Properties, $0^{\text {th }}$

 bisimilarity is difficult to handle- Meas may not have weak pullbacks
so people turned to analytic or Polish spaces
- Analytic spaces have semi-pullbacks Edalat '99
- It has a final coal Moss\&Viglizzo'06

CMCS 26.3.2010

Main research in continuous systems

- Labelled Markov processes bisimulation as before, logical characterization of bisimulation
Desharnais,Panangaden,..(book '09)
- Stochastic relations generalization of Markov processes Doberkat (book'07)

Main research in

continuous systems

 reactive labels- Labelled Markov processes bisimulation as before, logical characterization of bisimulation
Desharnais,Panangaden,..(book '09)
- Stochastic relations generalization of Markov processes Doberkat (book'07)

Main research in

continuous syctame

 analytic spaces

 analytic spaces}- Labelled Markov procese bisimulation as before, logical characterization of bisimulation
Desharnais,Panangaden,..(book' 09)
- Stochastic relations generalization of Markov processes Doberkat (book'07)

Main research in

continuous syetame

 analytic spaces

 analytic spaces}- Labelled Markov process bisimulation as before, logical finite conjunctions negation free logic characterization of bisimulation
Desharnais,Panangaden,..(book '09)
- Stochastic relations generalization of Markov processes Doberkat (book'07)

Main research in

continuous syatame
 analytic spaces

- Labelled Markov procese bisimulation as before, logical characterization of bisimulation
Desharnais, Panangaden,... Kleisli morphisms in the Kleisli category of the Giry monad
- Stochastic relations

generalization of Markov processes Doberkat (book'07)

Main research in

continuous syatame
 analytic spaces

- Labelled Markov procesc bisimulation as before, logical characterization of bisimulation
finite conjunctions negation free logic

Desharnais, Panangaden,... Kleisli morphisms in the Kleisli category of the

- Stochastic relations generalization of Markov processes Doberkat (book'07)

Main research in

continuous syatamo
 analytic spaces

- Labelled Markov procese bisimulation as before, logical characterization of bisimulation
finite conjunctions negation free logic

Desharnais, Panangaden,... Kleisli morphisms in the Kleisli category of the

- Stochastic relations Doberkat (book'07)

Measure spaces are fine

Measure spaces are fine

- bisimilarity is the problem

Measure spaces are fine

- bisimilarity is the problem

Measure spaces are fine

- bisimilarity is the problem
- behaviour equivalence is the solution Danos, Desharnais, Laviolette, Panangaden '04/'06

Measure spaces are fine

- bisimilarity is the problem

- behaviour equivalence is the solution Danos, Desharnais, Laviolette, Panangaden '04/'06

Measure spaces are fine

- bisimilarity is the problem

- behaviour equivalence is the solution Danos, Desharacais, Laviolette, Panangaden '04/'06
same logical characterization

Measure spaces are fine

- bisimilarity is the problem

- behaviour equivalence is the solution Danos, Desharacais, Laviolette, Panangaden '04/'06

No need of Polish/ analytic spaces

all works smoothly

Logical characterization via dual adjunctions

Jacobs\&S.'09

Logical characterization via dual adjunctions

Jacobs\&S.' 09

maps a measure space to its σ-algebra

Logical characterization via dual adjunctions

Jacobs\&S.'09

maps a measure space to its σ-algebra

Logical characterization via dual adjunctions

Jac

$$
\begin{gathered}
\eta: A \rightarrow \mathcal{S F}(A) \\
\eta(a)=\{\alpha \in \mathcal{F}(A) \mid a \in \alpha\} \\
\text { Meas }{ }^{\text {op }} \begin{array}{l}
\text { maps a measure space to } \\
\text { its } \sigma \text {-algebra }
\end{array} \\
\text { filters, upsets closed under } \begin{array}{l}
\text { fith ite conjunctions, } \sigma \text {-algebra generated } \\
\text { by } \eta(a)
\end{array}
\end{gathered}
$$

Logical characterization via dual adjunctions

Jac

$$
\begin{gathered}
\eta: A \rightarrow \mathcal{S F}(A) \\
\eta(a)=\{\alpha \in \mathcal{F}(A) \mid a \in \alpha\} \\
\xlongequal[g: A \longrightarrow \mathcal{S}(X) \text { in MSL }]{f: X \longrightarrow \mathcal{F}(A) \quad \text { in Meas }} \\
\text { via } \xlongequal[x \in g(a)]{a \in f(x)}
\end{gathered}
$$

Logical characterization via dual adjunctions

Jac

$$
\begin{gathered}
\eta: A \rightarrow \mathcal{S F}(A) \\
\eta(a)=\{\alpha \in \mathcal{F}(A) \mid a \in \alpha\} \\
\xlongequal[g: A \longrightarrow \mathcal{F}(A) \quad \text { in Meas }]{f: X \longrightarrow \mathcal{S}(X) \text { in MSL }} \\
\text { via } \underset{x \in g(a)}{a \in f(x)}
\end{gathered}
$$

$$
\mathcal{G} \complement_{1} \text { Meas }^{o p} \xrightarrow{S^{S}} \text { MSL } \bigcirc K
$$

Logical characterization via dual adjunctions

Jac

$$
\begin{gathered}
\eta: A \rightarrow \mathcal{S F}(A) \\
\eta(a)=\{\alpha \in \mathcal{F}(A) \mid a \in \alpha\} \\
\xlongequal[g: A \longrightarrow \mathcal{S}(X) \quad \text { in MSL }]{f: X \longrightarrow \mathcal{F}(A) \quad \text { in Meas }} \\
\text { via } \xlongequal[x \in g(a)]{a \in f(x)}
\end{gathered}
$$

$$
{ }^{G} C_{1} \text { Meas }^{o p} \xrightarrow{\leftarrow} \mathrm{~S}^{\tau} \bigcirc K
$$

expressivity

Discrete to continuous

with $D \dashv U$

Discrete to continuous

Discrete to continuous

Discrete to continuous

obvious natural transformation

$$
\rho: \mathcal{D} U \Rightarrow U \mathcal{G}
$$

Discrete to continuous

obvious natural transformation
We can translate

$$
\rho: \mathcal{D} U \Rightarrow U \mathcal{G}
$$

Discrete to continuous

forgetful with $D \dashv U$

obvious natural transformation
We can translate chains into processes:

$$
\rho: \mathcal{D} U \Rightarrow U \mathcal{G}
$$

Discrete to continuous

forgetful

 with $\quad D \dashv U$We can translate chains into processes:

$$
(X \xrightarrow{c} \mathcal{D}(X)=\mathcal{D} U D(X)) \longmapsto\left(X \xrightarrow{c} \mathcal{D} U D(X) \xrightarrow{\rho_{D X}} U \mathcal{G} D(X)\right)
$$

Discrete to continuous

forgetful

 with $D \dashv U$We can translate chains into processes:

$$
(X \xrightarrow{c} \mathcal{D}(X)=\mathcal{D} U D(X)) \longmapsto\left(X \xrightarrow{c} \mathcal{D} U D(X) \xrightarrow{\rho_{D X}} U \mathcal{G} D(X)\right)
$$

Discrete to continuous

forgetful

 with $D \dashv U$We can translate chains into processes:

Final message

Final message

- Both discrete and continuous probabilistic systems are coalgebras

Final message

often just nice examples

- Both discrete and continuous probabilistic systems are coalgebras

Final message

often just nice examples

- Both discrete and continuous probabilistic systems are coalgebras

Final message

often just nice examples

 also some interesting results need advertising- Both discrete and continuous probabilistic systems are coalgebras

Final message

often just nice examples

- Both discrete and continuous probabilistic systems are coalgebras
- Observation: behaviour equivalence (cospan) is more suitable than bisimilarity (span)

Final message

often just nice examples
also some interesting results

need advertising

- Both discrete and continuous probabilistic systems are coalgebras
- Observation: behaviour equivalence (cospan) is more suitable than bisimilarity (span)
- Measure spaces are enough, one can forget about Polish or analytic ones (unless one loves them)

