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Probability distribution functor on Sets

and its variants
{x ∈ X | µ(x) > 0}

D(X) = {µ : X → [0, 1] |
�

x∈X

µ(x) = 1}

D≤1(X) = {µ : X → [0, 1] |
�
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Df (X) = {µ : X → [0, 1] |
�

x∈X

µ(x) = 1, supp(µ) is finite}
has a final 
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F := | A | D | P | FA | F + F | F × F | F ◦ F
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Discrete system types
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MC D
DLTS ( + 1)A

LTS P(A× ) ∼= PA

React (D + 1)A

Gen D(A× ) + 1
Str D + (A× ) + 1
Alt D + P(A× )
Var D(A× ) + P(A× )
SSeg P(A×D)
Seg PD(A× )
. . . . . .
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enter coalgebra, which provides a unifying 
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all concrete probabilistic bisimulations (based 
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Bartels,S.&deVink ’03/’04
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Discrete systems
enter coalgebra, which provides a unifying 
framework

become available as examples for generic 
coalgebra results 

all concrete probabilistic bisimulations (based 
on Larsen&Skou bisimulation) coincide with 
coalgebraic bisimulations
Bartels,S.&deVink ’03/’04
S. ’05
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original proof: as in 
de Vink&Rutten

next version, simpler

modular, inductive proof

relation liftings

Monday, March 29, 2010



Bisimilarity for simple 
Segala automata

Ana Sokolova Uni Salzburg CMCS 26.3.2010

An equivalence R on the states 
of a simple Segala automaton 
is a bisimulation iff
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Theorem            If F preserves weak pullbacks and there 
is an injective natural transformation from F to G, 
then F-coalgebras      G-coalgebras
 
1.      If there is an injective natural transformation 
from F to G, then it induces a translation that 
preserves and reflects behaviour equivalence

2.      If F preserves weak pullbacks, then behaviour 
equivalence and bisimilarity coincide
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Theorem            If F preserves weak pullbacks and there 
is an injective natural transformation from F to G, 
then F-coalgebras      G-coalgebras
 
1.      If there is an injective natural transformation 
from F to G, then it induces a translation that 
preserves and reflects behaviour equivalence

2.      If F preserves weak pullbacks, then behaviour 
equivalence and bisimilarity coincide

X

c
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u1 �� U

γ

��

X
u2��

c

��
F (X)

F (u1) �� F (U) F (X)
F (u2)��

if not, behaviour equivalence is betterbisimilarity always 
implies behaviour 

equivalence (pushouts)
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simple Segala system Segala system

P(A×D) PD(A× )

•
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• • ... •
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Basic natural 
transformations
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• η : 1 ⇒ P with ηX(∗) := ∅,

• σ : ⇒ P with σX(x) := {x}

• δ : ⇒ D with δX(x) := δx ( Dirac),

• ιl : F ⇒ F + G and ιr : G ⇒ F + G,

• φ+ ψ : F + G ⇒ F � + G� for
φ : F ⇒ F � and ψ : G ⇒ G� (both with i.c.),

• κ : A× P ⇒ P(A× ) with κX(a,M) := {�a, x� | x ∈ M},

• . . .
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often just 
nice examples

also some interesting results 

Observation: behaviour equivalence (cospan) is more 
suitable than bisimilarity (span)

Measure spaces are enough, one can forget about 
Polish or analytic ones (unless one loves them)

need advertising

Monday, March 29, 2010


