Regular Languages of Trees and Probability

Matteo Mio
CNRS – ENS Lyon
Outline of the Talk

Background
Outline of the Talk

Background

- Introduction to SAT problem for ordinary temporal logics.
Outline of the Talk

Background

- Introduction to SAT problem for ordinary temporal logics.
- Connection with theory of Regular languages of trees.
Outline of the Talk

Background

- Introduction to SAT problem for ordinary temporal logics.
- Connection with theory of *Regular languages of trees*.
- Motivation: the SAT problem for probabilistic logics.
Outline of the Talk

Background

- Introduction to SAT problem for ordinary temporal logics.
- Connection with theory of Regular languages of trees.
- Motivation: the SAT problem for probabilistic logics.

Results: probability-related facts about regular languages:
Outline of the Talk

Background

- Introduction to SAT problem for ordinary temporal logics.
- Connection with theory of Regular languages of trees.
- Motivation: the SAT problem for probabilistic logics.

Results: probability-related facts about regular languages:

1. *Measurability,*
Background

- Introduction to SAT problem for ordinary temporal logics.
- Connection with theory of Regular languages of trees.
- Motivation: the SAT problem for probabilistic logics.

Results: probability-related facts about regular languages:

1. Measurability,
2. Closure Properties,
Outline of the Talk

Background

- Introduction to SAT problem for ordinary temporal logics.
- Connection with theory of Regular languages of trees.
- Motivation: the SAT problem for probabilistic logics.

Results: probability-related facts about regular languages:

1. Measurability,
2. Closure Properties,
3. How to compute their probability.
Temporal Logics

Models = Directed Graphs with predicates:

\[S \rightarrow \mathcal{P}(\text{Prop}) \times \mathcal{P}(S) \]

\[Prop = \{ P \}, \ P = \{ p, q, s \} \]
Models = Directed Graphs with predicates:
\[S \rightarrow \mathcal{P}(\text{Prop}) \times \mathcal{P}(S) \]

\[
\begin{array}{c}
p \\ q \\ r \\ s
\end{array}
\]

\[P = \{ p, q, s \} \]

Logics = μ-calculus, CTL, CTL*, ...
Temporal Logics

Models = Directed Graphs with predicates:
\[S \rightarrow \mathcal{P}(\text{Prop}) \times \mathcal{P}(S) \]

\[
\begin{tikzpicture}
 \node (p) at (0,0) {p};
 \node (q) at (1,-1) {q};
 \node (r) at (2,0) {r};
 \node (s) at (1,-2) {s};

 \path[->]
 (p) edge (q)
 (q) edge (r)
 (r) edge (s)
 (s) edge (p);
\end{tikzpicture}
\]

\[\text{Prop} = \{P\}, \ P = \{p, q, s\} \]

Logics = \(\mu\)-calculus, CTL, CTL\(^*\), ...

- There exists an infinite path of states satisfying \(P\):
 \[\nu X. \lozenge (P \land X) \]
Problem 1: **Model Checking**
Given a finite model M and a formula ϕ,

$$M \models \phi?$$
Problem 1: **Model Checking**
Given a finite model M and a formula ϕ,

$$M \models \phi$$

- Decidable.
Two Main Problems

Problem 1: **Model Checking**
Given a finite model M and a formula ϕ,

\[M \models \phi \]

- Decidable.

Problem 2: **SAT(isfiability)**
Given a formula ϕ,

\[\exists M. (M \models \phi) \]
Two Main Problems

Problem 1: **Model Checking**
Given a finite model M and a formula ϕ,

$$M \models \phi$$

- Decidable.

Problem 2: **SAT(isfiability)**
Given a formula ϕ,

$$\exists M. (M \models \phi)$$

- Decidable.
Two Main Problems

Problem 1: **Model Checking**
Given a finite model M and a formula ϕ,

$$M \models \phi ?$$

* Decidable.

Problem 2: **SAT(isfiability)**
Given a formula ϕ,

$$\exists M. (M \models \phi) ?$$

* Decidable.
* Finite Model Property.
Monadic Second Order Logic

\[
\text{MSO} = \text{First order logic} + \text{Monadic 2nd order quantification}
\]

\[
\phi \lor \psi \mid \neg \phi \mid \exists x.\phi(x) \mid \exists X.\phi(X) \mid x \in X
\]
Monadic Second Order Logic

MSO = First order logic + Monadic 2nd order quantification

\[\phi \lor \psi \mid \neg \phi \mid \exists x. \phi(x) \mid \exists X. \phi(X) \mid x \in X \]

MSO is interpreted over a fixed model, the FULL BINARY TREE.

- Relational structure \(\langle \{L, R\}^*, Succ_L, Succ_R \rangle \),
- where \(Succ_L(x) = x.L \) and \(Succ_R(x) = x.R \)
Example 1:

\[\forall x. \exists y. (y = \text{Succ}_L(x)) \]
Example 1:

\[\forall x. \exists y. (y = \text{Succ}_L(x)) \quad \text{TRUE} \]
Example 1:
\[\forall x. \exists y. (y = \text{Succ}_L(x)) \quad \text{TRUE} \]

Example 2:
\[\exists x. \forall y. (x \neq \text{Succ}_L(y) \land x \neq \text{Succ}_R(y)) \]
Example 1:
\[\forall x. \exists y. (y = Succ_L(x)) \quad \text{TRUE} \]

Example 2:
\[\exists x. \forall y. (x \neq Succ_L(y) \land x \neq Succ_R(y)) \quad \text{TRUE} \quad x = \epsilon \]
Example 1:
\[\forall x. \exists y. \left(y = \text{Succ}_L(x) \right) \quad \text{TRUE} \]

Example 2:
\[\exists x. \forall y. \left(x \neq \text{Succ}_L(y) \land x \neq \text{Succ}_R(y) \right) \quad \text{TRUE} \quad x = \epsilon \]

Example 3:
\[\exists X. \left(\epsilon \in X \land \forall x \in X \rightarrow \text{Succ}_L(x) \in X \right) \]
Example 1:
\[\forall x. \exists y. (y = \text{Succ}_L(x)) \quad \text{TRUE} \]

Example 2:
\[\exists x. \forall y. (x \neq \text{Succ}_L(y) \land x \neq \text{Succ}_R(y)) \quad \text{TRUE} \quad x = \epsilon \]

Example 3:
\[\exists X. (\epsilon \in X \land \forall x \in X \rightarrow \text{Succ}_L(x) \in X) \quad \text{TRUE} \]
Example 1:
\[\forall x. \exists y.(y = \textit{Succ}_L(x)) \quad \text{TRUE} \]

Example 2:
\[\exists x. \forall y.(x \neq \textit{Succ}_L(y) \land x \neq \textit{Succ}_R(y)) \quad \text{TRUE} \quad x = \epsilon \]

Example 3:
\[\exists X. (\epsilon \in X \land \forall x \in X \rightarrow \textit{Succ}_L(x) \in X) \quad \text{TRUE} \]

Theorem (M. Rabin ’69): The MSO theory of the full binary tree is decidable.
How to solve the SAT problem for temporal logics:
How to solve the SAT problem for temporal logics:

1. Take a (CTL, μ-calculus, ...) formula $F(P_1, \ldots, P_n)$
How to solve the SAT problem for temporal logics:

1. Take a \((\text{CTL, } \mu\text{-calculus, } \ldots)\) formula \(F(P_1, \ldots, P_n)\)

 - E.g., \(\mu\text{-calculus formula } \nu X.\Diamond(X \land P)\)
How to solve the SAT problem for temporal logics:

1. Take a (CTL, μ-calculus, . . .) formula $F(P_1, \ldots, P_n)$
 - E.g., μ-calculus formula $\nu X.\Diamond(X \land P)$

2. translate it to a MSO formula $\phi(P_1, \ldots, P_n)$,
How to solve the SAT problem for temporal logics:

1. Take a (CTL, μ-calculus, . . .) formula $F(P_1, \ldots, P_n)$
 - E.g., μ-calculus formula $\nu X.\Diamond(X \land P)$

2. translate it to a MSO formula $\phi(P_1, \ldots, P_n)$,
 - $\exists X. ("X is an infinite branch" \land \forall x.x \in X \rightarrow x \in P)$
How to solve the SAT problem for temporal logics:

1. Take a (CTL, μ-calculus, . . .) formula $F(P_1, \ldots, P_n)$
 - E.g., μ-calculus formula $\nu X.\Diamond(X \land P)$

2. translate it to a MSO formula $\phi(P_1, \ldots, P_n)$,
 - $\exists X. ("X is an infinite branch" \land \forall x. x \in X \rightarrow x \in P)$

3. check if $\exists P_1 \ldots \exists P_n. \phi(P_1, \ldots, P_n)$ is valid.
How to solve the SAT problem for temporal logics:

1. Take a (CTL, \(\mu\)-calculus, \ldots) formula \(F(P_1, \ldots, P_n)\)
 - E.g., \(\mu\)-calculus formula \(\nu X.\Box(X \land P)\)

2. translate it to a MSO formula \(\phi(P_1, \ldots, P_n)\),
 - \(\exists X.(\text{"\(X\) is an infinite branch" } \land \forall x. x \in X \rightarrow x \in P)\)

3. check if \(\exists P_1 \ldots \exists P_n.\phi(P_1, \ldots, P_n)\) is valid.

Caveat: This only checks satisfiability of \(F(P_1, \ldots, P_n)\) by a model having a binary-tree structure.
How to solve the SAT problem for temporal logics:

1. Take a (CTL, μ-calculus, ...) formula $F(P_1, \ldots, P_n)$
 - E.g., μ-calculus formula $\nu X. \lozenge (X \land P)$
2. translate it to a MSO formula $\phi(P_1, \ldots, P_n)$,
 - $\exists X. ("X is an infinite branch" \land \forall x. x \in X \rightarrow x \in P)$
3. check if $\exists P_1 \ldots \exists P_n. \phi(P_1, \ldots, P_n)$ is valid.

Caveat: This only checks satisfiability of $F(P_1, \ldots, P_n)$ by a model having a binary-tree structure.
 - Interpret arbitrary trees by binary tree with "dummy states"
\[M \models F(P_1, \ldots, P_n) \iff \llbracket M \rrbracket \models \phi(P_1, \ldots, P_n, D) \]
A predicate P over the domain $\{L, R\}^*$ is a function:

$$P : \{L, R\}^* \rightarrow \{0, 1\}$$
Regular Languages of Trees

A predicate P over the domain $\{L, R\}^*$ is a function:

$$P : \{L, R\}^* \rightarrow \{0, 1\}$$

Terminology: the *space* of $\{0, 1\}$-labeled trees,

$$P : \{L, R\}^* \rightarrow \{0, 1\} \iff t \in T_{0,1}$$
A predicate P over the domain $\{L, R\}^*$ is a function:

$$P : \{L, R\}^* \rightarrow \{0, 1\}$$

Terminology: the space of $\{0, 1\}$-labeled trees,

$$P : \{L, R\}^* \rightarrow \{0, 1\} \iff t \in T_{0,1}$$

Definition: A set $L \subseteq T_{0,1}$ is regular if:

$$L = \{ t \mid \phi(t) \text{ holds} \}$$

for some MSO formula $\phi(X)$.
Definition (extended): A set $L \subseteq \mathcal{T}_{0,1} \times \mathcal{T}_{0,1}$ is regular if:

$$L = \{ \langle t_1, t_2 \rangle \mid \phi(t_1, t_2) \text{ holds} \}$$

for some MSO formula $\phi(X, Y)$.
Definition (extended): A set $L \subseteq \mathcal{T}_{0,1} \times \mathcal{T}_{0,1}$ is regular if:

$$L = \{ \langle t_1, t_2 \rangle \mid \phi(t_1, t_2) \text{ holds} \}$$

for some MSO formula $\phi(X, Y)$.

Definition (final): A set $L \subseteq (\mathcal{T}_{0,1})^n$ is regular if:

$$L = \{ \langle t_1, t_2, \ldots, t_n \rangle \mid \phi(t_1, t_2, \ldots, t_n) \text{ holds} \}$$

for some MSO formula $\phi(X_1, \ldots, X_n)$.
Logical connectives as set-theoretical operations:

- $L = \phi \implies L^c = \neg \phi$
Logical connectives as set-theoretical operations:

- $L = \phi \quad \Rightarrow \quad L^c = \neg \phi$

- $L_1 = \phi_1 \text{ and } L_2 = \phi_2 \quad \Rightarrow \quad L_1 \cup L_2 = \phi_1 \lor \phi_2$
Logical connectives as set-theoretical operations:

- \(L = \phi \implies L^c = \neg \phi \)
- \(L_1 = \phi_1 \) and \(L_2 = \phi_2 \implies L_1 \cup L_2 = \phi_1 \lor \phi_2 \)
- \(L = \phi(X, Y) \implies \exists X. \phi(X, Y) \) is the projection
The set $\mathcal{T}_{0,1}$ is a metric (Polish) space.
The set $T_{0,1}$ is a metric (Polish) space.
The set $\mathcal{T}_{0,1}$ is a metric (Polish) space.

Diagram:

- Δ^0_1 arrows to Σ^0_1 and Π^0_1
- Δ^0_2 arrows to Σ^0_2 and Π^0_2
- \ldots arrows to Δ^0_α, Σ^0_α, and Π^0_α
- $\Delta^0_{\alpha+1}$ arrows to \ldots

Borel $= \Delta^1_1$

- Δ^1_2
- Δ^1_3
- \ldots

- Π^1_1
- Π^1_2
- Π^1_3

Notation:

- $\Delta^0_{\alpha+1}$
- Σ^0_{α}
- Π^0_{α}
- $\Delta^1_{\alpha+1}$
- Σ^1_{α}
- Π^1_{α}
The set $\mathcal{T}_{0,1}$ is a metric (Polish) space.

$\Delta_0 \to \Sigma_1 \to \Delta_1 \to \Pi_1 \to \Delta_2 \to \Pi_2 \to \ldots \Delta_\alpha \to \Pi_\alpha \to \Delta_{\alpha+1} \to \ldots$

$\Sigma_0 \to \ldots \to \Sigma_\alpha \to \ldots$

Borel $= \Delta_1^1$
$\text{Borel} = \Delta^1_1$
Paper: Arnold and Niwinski, *Continuous Separation of Game Languages*, in Fundamenta Informaticae 2007.

Game Languages $W_{0,k}$, for $k > 0$

- For every regular $L \subseteq \mathcal{T}_{0,1}$ there exists k such that $L \leq W_{0,k}$.

Paper: Arnold and Niwinski, *Continuous Separation of Game Languages*, in Fundamenta Informaticae 2007.

Game Languages $W_{0,k}$, for $k > 0$

- For every regular $L \subseteq \mathcal{T}_{0,1}$ there exists k such that $L \leq W_{0,k}$.

Theorem: $W_{0,1} \not\leq W_{0,2} \not\leq W_{0,3} \ldots$
Paper: Arnold and Niwinski, *Continuous Separation of Game Languages*, in Fundamenta Informaticae 2007.

For every regular $L \subseteq \mathcal{T}_{0,1}$ there exists k such that $L \leq W_{0,k}$.

Theorem: $W_{0,1} \preceq W_{0,2} \preceq W_{0,3} \ldots$
Points discussed so far

- SAT problem for temporal logics (μ-calculus, CTL, CTL*,...).
- MSO as a general solution for the SAT problem.
- Regular Languages as Boolean algebra of sets in the Polish space $T_{0,1}$.
Models = Markov Chains with Predicates:
\[S \rightarrow \mathcal{P}(\text{Prop}) \times \mathcal{D}(S) \]

\[Prop = \{ P \}, \ P = \{ p, q, s \} \]
Probabilistic Temporal Logics

Models = Markov Chains with Predicates:
\(S \to \mathcal{P}(\text{Prop}) \times \mathcal{D}(S) \)

\[
\begin{array}{c}
p \quad 1 \\
q \quad 1 \\
\quad 1/2 \\
s \quad 1/2
\end{array}
\]

\(p \to q \quad 1 \)
\(q \to r \quad 1 \)
\(q \to s \quad 1/2 \)
\(r \to p \quad 1 \)

\(\text{Prop} = \{P\}, \ P = \{p, q, s\} \)

Logics = probabilistic CTL (pCTL), probabilistic \(\mu \)-calculus, etc.
Probabilistic Temporal Logics

Models = Markov Chains with Predicates:
\[S \to \mathcal{P}(\text{Prop}) \times \mathcal{D}(S) \]

\[
\begin{array}{c}
p \quad 1 \\
q \quad 1 \quad \frac{1}{2} \quad r \\
s \quad \frac{1}{2} \quad \frac{1}{2} \\
\end{array}
\]

\[\text{Prop} = \{P\}, \ P = \{p, q, s\} \]

Logics = probabilistic CTL (pCTL), probabilistic \(\mu\)-calculus, etc.

- The probability of generating an infinite path of states satisfying \(P\) is \(> 0.85\): \(\mathbb{P}_{>0.85}(G \ P)\)
Problem 1: **Model Checking**
Given a finite model M and a formula ϕ,

$$M \models \phi$$
Problem 1: **Model Checking**
Given a finite model M and a formula ϕ,

\[M \models \phi \]

- Decidable.
Main Problems

Problem 1: **Model Checking**
Given a finite model M and a formula ϕ,

\[M \models \phi \]

- Decidable.

Problem 2: **SAT(isfiability)**
Given a formula ϕ,

\[\exists M. (M \models \phi) \]
Problem 1: **Model Checking**
Given a finite model M and a formula ϕ,

$$M \models \phi ?$$

- Decidable.

Problem 2: **SAT(satisfiability)**
Given a formula ϕ,

$$\exists M. (M \models \phi) ?$$

- Open Problem !!!
Failure of Finite Model Property

Property: “The probability of producing an infinite path of states satisfying $\neg a \land \psi$ is positive”

$$\mathbb{P}_{>0}(G(\neg a \land \psi))$$
Property: “The probability of producing an infinite path of states satisfying $\neg a \land \psi$ is positive”

$$\mathbb{P}_{>0}(G (\neg a \land \psi))$$

where ψ says: “the probability of reaching a state satisfying a is positive”: $\psi = \mathbb{P}_{>0}(\circ a)$
Failure of Finite Model Property

Property: “The probability of producing an infinite path of states satisfying \(\neg a \land \psi \) is positive”

\[
P_{>0}(G (\neg a \land \psi))
\]

where \(\psi \) says: “the probability of reaching a state satisfying \(a \) is positive”: \(\psi = P_{>0}(\circ a) \)
Finite-SAT Problem: Given a formula ϕ,

$$\exists M. (M \models \phi) \land M \text{ is finite?}$$
Finite-SAT Problem: Given a formula ϕ,
\[\exists M. (M \models \phi) \land M \text{ is finite?} \]

General SAT Problem: Given a formula ϕ,
\[\exists M. (M \models \phi) \]
Finite-SAT Problem: Given a formula ϕ,

$$\exists M. (M \models \phi) \land M \text{ is finite?}$$

General SAT Problem: Given a formula ϕ,

$$\exists M. (M \models \phi)$$

- If a model M exists, is it finitely presentable?
Finite-SAT Problem: Given a formula ϕ,

$$\exists M. (M \models \phi) \land M \text{ is finite?}$$

General SAT Problem: Given a formula ϕ,

$$\exists M. (M \models \phi)$$

- If a model M exists, is it finitely presentable?
- Are the probabilities appearing in M rational, algebraic, computable?
Theorem (LICS 2008, Brázdil, Forejt, Kretínský, Kucera)

Both problems are decidable for **qualitative** pCTL.

- Only constraints $= 0$, ≥ 0, < 1 and $= 1$
Theorem (LICS 2008, Brázdil, Forejt, Kretínský, Kucera)

Both problems are decidable for qualitative pCTL.

- Only constraints $= 0$, ≥ 0, < 1 and $= 1$

Natural Questions:

1. Can we extend it to quantitative pCTL?
Theorem (LICS 2008, Brázdil, Forejt, Kretínský, Kucera)

Both problems are decidable for **qualitative** pCTL.

- Only constraints $= 0$, ≥ 0, < 1, and $= 1$

Natural Questions:

1. Can we extend it to **quantitative** pCTL?
2. Can we extend it to qualitative fragments of more expressive logics

 - pCTL*, pECTL*, probabilistic μ-calculus, etc?
Theorem (LICS 2008, Brázdil, Forejt, Kretínský, Kucera)

Both problems are decidable for qualitative pCTL.
- Only constraints $= 0, \geq 0, < 1$ and $= 1$

Natural Questions:

1. Can we extend it to quantitative pCTL?
2. Can we extend it to qualitative fragments of more expressive logics
 - pCTL*, pECTL*, probabilistic μ-calculus, etc?

This talk: can we use knowledge about MSO to solve these problems?
MSO logic is interpreted over the Full Binary Tree
MSO logic is interpreted over the Full Binary Tree

Idea: Interpret it as a binary Markov chain with coin-flip transitions.
Step 1: Replace n-ary transitions by binary transitions.
Step 1: Replace n-ary transitions by binary transitions.

Step 2: Replace generic probabilistic transitions by coin-flip transitions.
Extension of MSO

\[MSO ::= \phi \lor \psi \mid \neg \phi \mid \forall x.\phi(x) \mid \forall X.\phi(X) \mid x \in X \]

New “for almost all” quantifier: \(\forall^{=1} X.\phi(X) \)
Extension of MSO

\[MSO ::= \phi \lor \psi \mid \neg \phi \mid \forall x.\phi(x) \mid \forall X.\phi(X) \mid x \in X \]

New “for almost all” quantifier: \(\forall^=1 X.\phi(X) \)

- \(\phi(X) \) holds on a *random* predicate \(X \) with probability 1
Extension of MSO

\[MSO ::= \phi \lor \psi \mid \neg \phi \mid \forall x.\phi(x) \mid \forall X.\phi(X) \mid x \in X \]

New "for almost all" quantifier: \(\forall^=1 X.\phi(X) \)

- \(\phi(X) \) holds on a random predicate \(X \) with probability 1
- \(\mu(\{t \mid \phi(t) \text{ holds}\}) = 1 \)

where \(\mu \) is the coin-flipping probability measure on the space \(\mathcal{T}_{0,1} \)
Extension of MSO

\[\text{MSO} ::= \phi \lor \psi \mid \neg \phi \mid \forall x.\phi(x) \mid \forall X.\phi(X) \mid x \in X \]

New “for almost all” quantifier: \(\forall^1 X.\phi(X) \)

- \(\phi(X) \) holds on a *random* predicate \(X \) with probability 1
- \(\mu(\{ t \mid \phi(t) \text{ holds} \}) = 1 \)

where \(\mu \) is the coin-flipping probability measure on the space \(\mathcal{T}_{0,1} \)

- Example: \(\mu(\{ t \mid \epsilon \text{ is labeled by } 0 \}) = \frac{1}{2} \)
Extension of MSO

\[MSO ::= \phi \lor \psi \mid \neg \phi \mid \forall x.\phi(x) \mid \forall X.\phi(X) \mid x \in X \]

New “for almost all” quantifier: \(\forall=^1 X.\phi(X) \)

- \(\phi(X) \) holds on a *random* predicate \(X \) with probability 1
- \(\mu\left(\{t \mid \phi(t) \text{ holds}\}\right) = 1 \)

where \(\mu \) is the coin-flipping probability measure on the space \(\mathcal{T}_{0,1} \)

- Example: \(\mu\left(\{t \mid \epsilon \text{ is labeled by 0}\}\right) = \frac{1}{2} \)
- Example: \(\mu\left(\{t \mid \epsilon \text{ and } L \text{ are labeled by 0}\}\right) = \frac{1}{4} \)
Fact: MSO+∀=1 can encode qualitative pCTL*, pECTL*, probabilistic μ-calculus, . . .
Fact: MSO+$\forall^=1$ can encode qualitative pCTL*, pECTL*, probabilistic μ-calculus, ...

\[\forall^=1 X.\phi(X) \iff \mu\left(\{t \mid \phi(t) \text{ holds}\}\right) = 1 \]
Fact: MSO+$\forall=^1$ can encode qualitative pCTL*, pECTL*, probabilistic μ-calculus, ... \\

$$\forall=^1 X.\phi(X) \Leftrightarrow \mu(\{ t \mid \phi(t) \text{ holds} \}) = 1$$

Question: is the regular set $\phi(t)$ measurable?
Question: Are regular sets $L \subseteq \mathcal{T}_{0,1}$ measurable?
Question: Are regular sets $L \subseteq T_{0,1}$ measurable?
Question: Are regular sets $L \subseteq \mathcal{T}_{0,1}$ measurable?

Example: regular set $L \subseteq \mathcal{T}_{0,1}$

$$\{ t \mid \text{has } \geq |\mathbb{N}_1| \text{ branches with infinitely many 1’s} \}$$
Measurability of Regular Sets

Question: Are regular sets $L \subseteq T_{0,1}$ measurable?

"Temporary" Solution (PhD thesis, 2012): $\text{ZFC} + \text{MA}_{\aleph_1}$:
Kolmogorov’s R-sets
Goal (1928): Find a large σ-algebra of safe sets.
Kolmogorov’s \mathcal{R}-sets

Goal (1928): Find a large σ-algebra of *safe* sets.

- Borel Sets $= \sigma\left(\text{Open}, \bigcup_n, \neg \right)$
Goal (1928): Find a large σ-algebra of *safe* sets.

- Borel Sets $= \sigma\left(\text{Open}, \bigcup_n, \neg\right)$
- σ-algebra generated by Suslin operation (1918) $= \sigma\left(\text{Open}, \mathcal{A}, \neg\right)$
Kolmogorov’s \mathcal{R}-sets

Goal (1928): Find a large σ-algebra of *safe* sets.

- Borel Sets = $\sigma\left(\text{Open}, \bigcup_n, \neg\right)$
- σ-algebra generated by Suslin operation (1918) = $\sigma\left(\text{Open}, \mathcal{A}, \neg\right)$

Idea: define operator (transform) \mathcal{R} acting on operations.
Kolmogorov’s \mathcal{R}-sets

Goal (1928): Find a large σ-algebra of safe sets.

- Borel Sets $= \sigma\left(\text{Open}, \bigcup_n, \neg\right)$
- σ-algebra generated by Suslin operation (1918) $= \sigma\left(\text{Open}, \mathcal{A}, \neg\right)$

Idea: define operator (transform) \mathcal{R} acting on operations.

- $\mathcal{R}(\bigcup_n) = \mathcal{A}$.
Kolmogorov’s \mathcal{R}-sets

Goal (1928): Find a large σ-algebra of safe sets.

- Borel Sets $= \sigma(\text{Open}, \bigcup_n, \neg)$
- σ-algebra generated by Suslin operation (1918) $= \sigma(\text{Open}, \mathcal{A}, \neg)$

Idea: define operator (transform) \mathcal{R} acting on operations.

- $\mathcal{R}(\bigcup_n) = \mathcal{A}$.
- $\mathcal{R}(\mathcal{A})$ a new and more expressive operation on sets.
Kolmogorov’s \mathcal{R}-sets

Goal (1928): Find a large σ-algebra of safe sets.

- Borel Sets $= \sigma\left(\text{Open}, \bigcup_n, \neg\right)$

- σ-algebra generated by Suslin operation (1918) $= \sigma\left(\text{Open}, \mathcal{A}, \neg\right)$

Idea: define operator (transform) \mathcal{R} acting on operations.

- $\mathcal{R}(\bigcup_n) = \mathcal{A}$.

- $\mathcal{R}(\mathcal{A})$ a new and more expressive operation on sets.

- $\mathcal{R}\mathcal{R}(\mathcal{A})$ …
Kolmogorov’s R-sets

Goal (1928): Find a large σ-algebra of safe sets.

- Borel Sets $= \sigma(\text{Open}, \bigcup_n, \neg)$
- σ-algebra generated by Suslin operation (1918) $= \sigma(\text{Open}, A, \neg)$

Idea: define operator (transform) R acting on operations.

- $R(\bigcup_n) = A.$
- $R(A)$ a new and more expressive operation on sets.
- $RR(A)$...

Kolmogorov’s σ-algebra of R-sets: $\sigma(\text{Open}, \{R^n\}_n, \neg)$
Theorem (1928): Every \mathcal{R}-set is measurable.
Theorem (1928): Every \(\mathcal{R} \)-set is measurable.
Theorem (1928): Every \mathcal{R}-set is measurable.

Goal: We want to show that all regular sets are \mathcal{R}-sets.
\mathcal{R}-sets can be classified by their order

Def: $\text{rank}(X) = n \iff X = \mathcal{R}^n(U_0, \ldots , U_n, \ldots)$
\mathcal{R}-sets can be classified by their order

Def: \(\text{rank}(X) = n \iff X = \mathcal{R}^n(U_0, \ldots, U_n, \ldots) \)

Theorem (MFCS 2014, Gogacz, Michalewski, Mio, Skrzypczak)

- Every Regular language in an \mathcal{R}-set.
\(\mathcal{R} \)-sets can be classified by their order

Def: \(\text{rank}(X) = n \iff X = \mathcal{R}^n(U_0, \ldots, U_n, \ldots) \)

Theorem (MFCS 2014, Gogacz, Michalewski, Mio, Skrzypczak)

- Every Regular language in an \(\mathcal{R} \)-set.
- The game language \(W_{0,n} \) is complete for the \(n \)-level of the hierarchy of \(\mathcal{R} \)-sets.
\(R \)-sets can be classified by their order

Def: \(\text{rank}(X) = n \iff X = R^n(U_0, \ldots, U_n, \ldots) \)

Theorem (MFCS 2014, Gogacz, Michalewski, Mio, Skrzypczak)

- Every Regular language in an \(R \)-set.
- The game language \(W_{0,n} \) is **complete** for the \(n \)-level of the hierarchy of \(R \)-sets.
- The class of \(R \)-set is precisely the class of sets constructible with parity games (with infinite arenas).
R-sets can be classified by their order

Def: \(\text{rank}(X) = n \iff X = R^n(U_0, \ldots, U_n, \ldots) \)

Theorem (MFCS 2014, Gogacz, Michalewski, Mio, Skrzypczak)

- Every Regular language in an R-set.
- The game language \(W_{0,n} \) is complete for the \(n \)-level of the hierarchy of R-sets.
- The class of R-set is precisely the class of sets constructible with parity games (with infinite arenas).
Back to MSO + $\forall^=1$

\[
\phi \lor \psi \mid \neg \phi \mid \forall x.\phi(x) \mid \forall X.\phi(X) \mid x \in X \mid \forall^=1 X.\phi(X)
\]
In terms of sets, the quantifier $\forall^=1 X.\phi(X)$ takes "large sections":

\[
\phi \lor \psi \mid \neg \phi \mid \forall x.\phi(x) \mid \forall X.\phi(X) \mid x \in X \mid \forall^=1 X.\phi(X)
\]
Back to MSO + $\forall^=1$

$$\phi \lor \psi \mid \neg \phi \mid \forall x. \phi(x) \mid \forall X. \phi(X) \mid x \in X \mid \forall^=1 X. \phi(X)$$

In terms of sets, the quantifier $\forall^=1 X. \phi(X)$ takes “large sections”:

Quantifier $\forall^=1 X. \phi(X)$ first studied by H. Friedman in 1979.
Other “for almost all” quantifiers include:

- For uncountably many: $\forall \geq \aleph_1 X. \phi(X)$ (Mostowski)
Other “for almost all” quantifiers include:

- For uncountably many: $\forall \geq \aleph_1 X. \phi(X)$ (Mostowski)
- For comeager many: $\forall^* X. \phi(X)$ (Friedman)
Other “for almost all” quantifiers include:

- For uncountably many: $\forall \geq N_1 X. \phi(X)$ (Mostowski)
- For comeager many: $\forall^* X. \phi(X)$ (Friedman)

Theorem: (Barany, Kaiser, Rabinovich, CSL 2009)

$$\text{MSO} = \text{MSO} + \forall \geq N_1$$
Question: Does $\text{MSO} = \text{MSO} + \forall^1$?
Question: Does MSO = MSO + \forall^1 ?

Answer: No.
Question: Does MSO = MSO + \forall^1 ?

Answer: No.

\[L = \{ t \in \mathcal{T}_{0,1} \mid t \text{ has } \geq \aleph_1 \text{ branches with } \infty \text{-many 1’s} \} \]
Question: Does \(\text{MSO} = \text{MSO} + \forall^1 \)?

Answer: No.

\[
L = \{ t \in \mathcal{T}_{0,1} \mid t \text{ has } \geq \aleph_1 \text{ branches with } \infty\text{-many } 1\text{'s} \}
\]

Question: Does \(\text{MSO} = \text{MSO} + \forall^* \)?
Theorem: (Michalewski, Mio, ICALP 2015)

\[\text{MSO} = \text{MSO} + \forall^* \]
Theorem: (Michalewski, Mio, ICALP 2015)

$$\text{MSO} = \text{MSO} + \forall^*$$

Proof Sketch: Quantifier elimination exploiting well-known Banach–Mazur game interpretation of (co)meagerness.
Theorem: (Michalewski, Mio, ICALP 2015)

\[
\text{MSO} = \text{MSO} + \forall^*
\]

Proof Sketch: Quantifier elimination exploiting well-known Banach–Mazur game interpretation of (co)meagerness.

Input: formula \(\forall^* X. \phi(X, Y) \)

Output: automaton accepting the language of \(\forall^* X. \phi(X, Y) \)
Theorem: (Michalewski, Mio, ICALP 2015)

\[\text{MSO} = \text{MSO} + \forall^* \]

Proof Sketch: Quantifier elimination exploiting well-known Banach–Mazur game interpretation of (co)meagerness.

Input: formula \(\forall^* X.\phi(X, Y) \)

Output: automaton accepting the language of \(\forall^* X.\phi(X, Y) \)

Remark: Proof relies on the fact: Regular Sets are Baire measurable.
Theorem: (Michalewski, Mio, ICALP 2015)

\[\text{MSO} = \text{MSO} + \forall^* \]

Proof Sketch: Quantifier elimination exploiting well-known Banach–Mazur game interpretation of (co)meagerness.

Input: formula \(\forall^* X.\phi(X, Y) \)

Output: automaton accepting the language of \(\forall^* X.\phi(X, Y) \)

Remark: Proof relies on the fact: Regular Sets are Baire measurable.

- (Hjorth, Khoussainov, Montalban, LICS 2008)
Theorem: (Michalewski, Mio, ICALP 2015)

\[MSO = MSO + \forall^* \]

Proof Sketch: Quantifier elimination exploiting well-known Banach–Mazur game interpretation of (co)meagerness.

Input: formula \(\forall^* X.\phi(X, Y) \)

Output: automaton accepting the language of \(\forall^* X.\phi(X, Y) \)

Remark: Proof relies on the fact: Regular Sets are Baire measurable.

- (Hjorth, Khoussainov, Montalban, LICS 2008)
- It also follows from the theory of \(\mathcal{R} \)-sets.
A surprising result of Ludwig Staiger (CSL 1996)

Theorem: A regular set of ω-words $L \subseteq \Sigma^\omega$ is comeager if and only if it has coin-flipping measure 1.
A surprising result of Ludwig Staiger (CSL 1996)

Theorem: A regular set of ω-words $L \subseteq \Sigma^\omega$ is comeager if and only if it has coin-flipping measure 1.

It follows from this fact that:

Corollary: The finite-SAT problem for qualitative pCTL, pCTL*, pECTL* and probabilistic μ-calculus is decidable.
A surprising result of Ludwig Staiger (CSL 1996)

Theorem: A regular set of ω-words $L \subseteq \Sigma^\omega$ is comeager if and only if it has coin-flipping measure 1.

It follows from this fact that:

Corollary: The finite-SAT problem for qualitative pCTL, pCTL*, pECTL* and probabilistic μ-calculus is decidable.

- Complements the result of Brázdil, Forejt, Kretínský, Kucera (LICS 2008).
- Proof method is applicable to many variants of pCTL.
What about MSO + $\forall=^1$?

Can we say something interesting about MSO + $\forall=^1$?
What about MSO + $\forall^=1$?

Can we say something interesting about MSO + $\forall^=1$?

- Can define non-regular sets. ☐
What about MSO $+ \forall^=1$

Can we say something interesting about MSO $+ \forall^=1$?

- Can define non-regular sets.
- Decidable fragments?
What about MSO + $\forall^{=1}$

Can we say something interesting about MSO + $\forall^{=1}$?

- Can define non-regular sets. □
- Decidable fragments?

Simplest formula involving the $\forall^{=1}$ quantifier:

$$\forall^{=1}X. \phi(X)$$

with $\phi(X)$ without occurrences of $\forall^{=1}$ quantifiers.
What about MSO + $\forall=1$

Can we say something interesting about MSO + $\forall=1$?

- Can define non-regular sets.
- Decidable fragments?

Simplest formula involving the $\forall=1$ quantifier:

$$\forall=1^X.\phi(X)$$

with $\phi(X)$ without occurrences of $\forall=1$ quantifiers.

Question: Can we decide if $\forall=1^X.\phi(X)$ is true?
What about MSO $+ \forall =^1$?

Can we say something interesting about MSO $+ \forall =^1$?

- Can define non-regular sets.
- Decidable fragments?

Simplest formula involving the $\forall =^1$ quantifier:

$$\forall =^1 X. \phi(X)$$

with $\phi(X)$ without occurrences of $\forall =^1$ quantifiers.

Question: Can we decide if $\forall =^1 X. \phi(X)$ is true?

i.e., $\mu(\{t \mid \phi(t)\}) = 1$?
Problem: Compute the probability $\mu(L)$ of a regular set L.
Problem: Compute the probability \(\mu(L) \) of a regular set \(L \).

Algorithm (Michalewski, Mio)

works only on \(L \) recognized by game–automata.
Problem: Compute the probability $\mu(L)$ of a regular set L.

Algorithm (Michalewski, Mio)

works only on L recognized by game–automata.

Problem: Compute the probability $\mu(L)$ of a regular set L.

Algorithm (Michalewski, Mio)

- works only on L recognized by game-automata.

General Problem: open.
Problem: Compute the probability $\mu(L)$ of a regular set L.

Algorithm (Michalewski, Mio)

- works only on L recognized by game–automata.

General Problem: open.

- Computing the Rabin–Mostowski index is also open.
Conclusions

• Some open problems
 ▸ SAT for probabilistic logics,
 ▸ Identifying decidable fragments of \(MSO + \forall = 1 \),
 ▸ Computing the probability \(\mu(L) \) of regular sets \(L \).

• Interplay with descriptive set theory:
 ▸ Question about measurability of regular sets.
 ▹ led to connection with Kolmogorov’s \(R \)-sets.
 ▸ Classical notion of large section (comeager).
 ▹ led to \(MSO = MSO + \forall^* \) and decidability of finite-SAT problem.
“Using” the Algorithm

Game Languages $\mathcal{W}_{0,k}$ are definable by game automata.
Game Languages $W_{0,k}$ are definable by game automata.

Fact 1: $\mu(W_{0,k}) = 1$ if k is even and $\mu(W_{0,k}) = 0$ if k is odd.
Fact 2: There are regular sets L with irrational probability $\mu(L)$.

Fact 2: There are regular sets L with irrational probability $\mu(L)$.

- All game-automata definable L have algebraic probability.

Fact 2: There are regular sets L with irrational probability $\mu(L)$.

- All game-automata definable L have algebraic probability.

Example: $L_1 \subseteq \mathcal{T}_{\{a,b,c\}}$

\[\mu(L_1) = \frac{1}{2} \]
“Using” the Algorithm

Fact 2: There are regular sets L with irrational probability $\mu(L)$.

- All game-automata definable L have algebraic probability.

Example: $L_2 \subseteq \mathcal{T}_{\{a,b,c\}}$

\[\mu(L_2) = \frac{1}{4}(3 - \sqrt{7}) \approx 0.088 \]
“Using” the Algorithm

Example: \(L_3 \subseteq T_{\{a,b,c\}} \)

\[
\mu(L_3) = \frac{1}{4}(3 - \sqrt{1 + 3\sqrt{7}}) \approx 0.0026
\]

\[
\mu(L_1) = \frac{1}{2} \quad \mu(L_2) \approx 0.088 \quad \mu(L_3) \approx 0.0026\ldots
\]

Fact 3: Let \(L_\infty = \bigcap_n L_n \).
Example: \(L_3 \subseteq \mathcal{T}_{\{a,b,c\}} \)

\[
\mu(L_3) = \frac{1}{4}(3 - \sqrt{1 + 3\sqrt{7}}) \approx 0.0026
\]

\[
\mu(L_1) = \frac{1}{2} \quad \mu(L_2) \approx 0.088 \quad \mu(L_3) \approx 0.0026 \ldots
\]

Fact 3: Let \(L_\infty = \bigcap_n L_n \). Then \(\mu(L_\infty) = 0 \) and \(L_\infty \) is comeager.
“Using” the Algorithm

Example: \(L_3 \subseteq \mathcal{T}_{\{a,b,c\}} \)

\[
\mu(L_3) = \frac{1}{4}(3 - \sqrt{1 + 3\sqrt{7}}) \approx 0.0026
\]

\[
\mu(L_1) = \frac{1}{2} \quad \mu(L_2) \approx 0.088 \quad \mu(L_3) \approx 0.0026 \ldots
\]

Fact 3: Let \(L_\infty = \bigcap_n L_n \). Then \(\mu(L_\infty) = 0 \) and \(L_\infty \) is comeager.

- Staiger’s property for trees is false.
Conclusions

- Some open problems
Conclusions

- Some open problems
 - SAT for probabilistic logics,
Conclusions

- Some open problems
 - SAT for probabilistic logics,
 - Identifying decidable fragments of $\text{MSO}^+\forall=1$,
Conclusions

- Some open problems
 - SAT for probabilistic logics,
 - Identifying decidable fragments of MSO$^+_\forall^=1$,
 - Computing the probability $\mu(L)$ of regular sets L.
Conclusions

- Some open problems
 - SAT for probabilistic logics,
 - Identifying decidable fragments of \(\text{MSO}^{+\forall=1}\),
 - Computing the probability \(\mu(L)\) of regular sets \(L\).

- Interplay with descriptive set theory:
 - Question about measurability of regular sets
Conclusions

- Some open problems
 - SAT for probabilistic logics,
 - Identifying decidable fragments of MSO+$\forall=1$,
 - Computing the probability $\mu(L)$ of regular sets L.

- Interplay with descriptive set theory:
 - Question about measurability of regular sets
 - led to connection with Kolmogorov’s \mathcal{R}-sets.
Conclusions

- Some open problems
 - SAT for probabilistic logics,
 - Identifying decidable fragments of MSO$_+^\forall = 1$,
 - Computing the probability $\mu(L)$ of regular sets L.

- Interplay with descriptive set theory:
 - Question about measurability of regular sets
 - led to connection with Kolmogorov’s R-sets.
 - Classical notion of large section (comeager)
Conclusions

- Some open problems
 - SAT for probabilistic logics,
 - Identifying decidable fragments of $\text{MSO}^+\forall =^1$,
 - Computing the probability $\mu(L)$ of regular sets L.

- Interplay with descriptive set theory:
 - Question about measurability of regular sets
 - led to connection with Kolmogorov’s \mathcal{R}-sets.
 - Classical notion of large section (comeager)
 - led to $\text{MSO} = \text{MSO} + \forall^*$
Conclusions

• Some open problems
 ▶ SAT for probabilistic logics,
 ▶ Identifying decidable fragments of $\text{MSO} + \forall = 1$,
 ▶ Computing the probability $\mu(L)$ of regular sets L.

• Interplay with descriptive set theory:
 ▶ Question about measurability of regular sets
 ▶ led to connection with Kolmogorov’s \mathcal{R}-sets.
 ▶ Classical notion of large section (comeager)
 ▶ led to $\text{MSO} = \text{MSO} + \forall^*$ and decidability of finite-SAT problem.