Revisiting the Institutional Approach to Herbrand’s Theorem

Ionuț Țuțu1,2 José Luiz Fiadeiro1

1Department of Computer Science, Royal Holloway University of London

2Simion Stoilow Institute of Mathematics of the Romanian Academy

6th Conference on Algebra and Coalgebra in Computer Science

Nijmegen, 2015
Herbrand’s Fundamental Theorem

• central result in proof theory
• deals with the reduction of provability in first-order logic to provability in propositional logic

\[\exists \{x_1, \ldots, x_n\} \cdot \rho(x_1, \ldots, x_n) \text{ is valid} \]
if and only if
\[\text{there is a sequence of terms } t_1, \ldots, t_n \]
\[\text{such that } \rho(t_1, \ldots, t_n) \text{ is valid} \]
Herbrand’s Fundamental Theorem

- central result in proof theory
- deals with the reduction of provability in first-order logic to provability in propositional logic

\[
\exists \{x_1, \ldots, x_n\} \cdot \rho(x_1, \ldots, x_n) \text{ is valid}
\]

if and only if

there is a sequence of terms \(t_1, \ldots, t_n\)

such that \(\rho(t_1, \ldots, t_n)\) is valid

1929
Herbrand’s Fundamental Theorem

- central result in proof theory
- deals with the reduction of provability in first-order logic to provability in propositional logic

- difficulties in following the proof and errors reported by Bernays and Gödel
Herbrand’s Fundamental Theorem

- central result in proof theory
- deals with the reduction of provability in first-order logic to provability in propositional logic
- gaps and counterexamples found by Dreben, Andrews, and Aanderaa
- the publication of the first emended (and detailed) proof of the result

Investigations in proof theory: The properties of true propositions

Jacques Herbrand
The resolution inference rule

• introduced by Robinson
• well-suited for automation

$$\exists X \cdot Q \land g \quad \forall Y \cdot c \leftarrow H$$

$$\exists X' \cdot \theta(Q) \land \theta(H)$$

• led to the development of logic programming – PROLOG (Kowalski & Colmerauer)
The resolution inference rule

- introduced by Robinson
- well-suited for automation

\[
\exists X \cdot Q \land g \quad \forall Y \cdot c \leftarrow H
\]

\[
\exists X' \cdot \theta(Q) \land \theta(H)
\]

- led to the development of logic programming – PROLOG (Kowalski & Colmerauer)

Herbrand 1929
Robinson 1965 1973
Foundations of logic programming

Given a logic program Γ, the answers to an existential query can be found simply by examining a term model – the least Herbrand model – instead of all the models that satisfy Γ.

1. $\Gamma \models_\Sigma \exists X \cdot \rho$
2. $\emptyset_{\Sigma, \Gamma} \models_\Sigma \exists X \cdot \rho$
3. There exists $\psi: X \rightarrow Y$ such that $\Gamma \models_\Sigma \forall Y \cdot \psi(\rho)$.

Q: How many Prolog programmers does it take to change a lightbulb?
A: Yes

$\exists \{x\} \cdot \text{“}x\text{ is a number”}$

$\land \text{“}X\text{ Prolog programmers can change a lightbulb”}$

Q: How many Prolog programmers does it take to change a lightbulb?
A: 1
Foundations of logic programming

Given a logic program Γ, the answers to an existential query can be found simply by examining a term model – the least Herbrand model – instead of all the models that satisfy Γ.

1. $\Gamma \models_{\Sigma} \exists X \cdot \rho$
2. $O_{\Sigma,\Gamma} \models_{\Sigma} \exists X \cdot \rho$
3. There exists $\psi: X \rightarrow Y$ such that $\Gamma \models_{\Sigma} \forall Y \cdot \psi(\rho)$.

Q: How many Prolog programmers does it take to change a lightbulb?
A: 1

$\exists \{x\} \cdot "x \text{ is a number}"
\wedge "x \text{ Prolog programmers can change a lightbulb}"

Q: How many Prolog programmers does it take to change a lightbulb?
A: Yes
Foundations of logic programming

Given a logic program Γ, the answers to an existential query can be found simply by examining a term model – the least Herbrand model – instead of all the models that satisfy Γ.

1. $\Gamma \vdash \Sigma \exists X \cdot \rho$
2. $\sigma, \Gamma \vdash \Sigma \exists X \cdot \rho$
3. There exists $\psi : X \rightarrow Y$ such that $\Gamma \vdash \Sigma \forall Y \cdot \psi(\rho)$.

Q: How many Prolog programmers does it take to change a lightbulb?
A: Yes

$\exists \{x\} \cdot \text{“}x\text{ is a number”}$
$\land \text{“}x\text{ Prolog programmers can change a lightbulb”}$

Q: How many Prolog programmers does it take to change a lightbulb?
A: 1

Herbrand 1929 Robinson 1965 1984
Given a logic program Γ, the answers to an existential query can be found simply by examining a term model – the least Herbrand model – instead of all the models that satisfy Γ.

1. $\Gamma \models_\Sigma \exists X \cdot \rho$

2. $\mathcal{O}_{\Sigma,\Gamma} \models_\Sigma \exists X \cdot \rho$

3. There exists $\psi: X \rightarrow Y$ such that $\Gamma \models_\Sigma \forall Y \cdot \psi(\rho)$.

Foundations of logic programming

Q: How many Prolog programmers does it take to change a lightbulb?
A: Yes

$\exists\{x\} \cdot \text{“} x \text{ is a number”}$

$\wedge \text{“} x \text{ Prolog programmers can change a lightbulb”}$

Q: How many Prolog programmers does it take to change a lightbulb?
A: 1
A multitude of variants

- relational first-order logic
- many-sorted equational logic
- higher-order logic
- hidden algebra
- institution-independent
- service-oriented
- abstract logic programming

\[\exists \{x, y\} \cdot \text{sorted}(2, 3, x, y, 5) \]
A multitude of variants

- relational first-order logic
- many-sorted equational logic
- higher-order logic
- hidden algebra
- institution-independent
- service-oriented
- abstract logic programming

\[\exists \{x: \text{Num}\} . \text{sorted}(2, 3, x) = T \]
A multitude of variants

- relational first-order logic
- many-sorted equational logic
- higher-order logic
- hidden algebra
- institution-independent
- service-oriented
- abstract logic programming

\[\exists \{ s : \text{List} \rightarrow B \} \cdot s[2, 3, 5] = T \]
A multitude of variants

- relational first-order logic
- many-sorted equational logic
- higher-order logic
- hidden algebra
- institution-independent
- service-oriented
- abstract logic programming

\[\exists \{ s : \text{Stream} \} \cdot s \sim \text{tail}(s) \]
A multitude of variants

- relational first-order logic
- many-sorted equational logic
- higher-order logic
- hidden algebra
- institution-independent
- service-oriented
- abstract logic programming
A multitude of variants

- relational first-order logic
- many-sorted equational logic
- higher-order logic
- hidden algebra
- institution-independent
- service-oriented
- abstract logic programming

\[\langle \text{Sig}, \text{Sen}, \text{Mod}, \models \rangle \]

subject to a satisfaction condition:

- for every \(\varphi : \Sigma \to \Omega \), \(M \in |\text{Mod}(\Omega)| \), \(\rho \in \text{Sen}(\Sigma) \)
 \(M \upharpoonright \varphi \models_{\Sigma} \rho \iff M \models_{\Omega} \varphi(\rho) \)
A multitude of variants

- relational first-order logic
- many-sorted equational logic
- higher-order logic
- hidden algebra
- institution-independent
- service-oriented
- abstract logic programming
A multitude of variants

- relational first-order logic
- many-sorted equational logic
- higher-order logic
- hidden algebra
- institution-independent
- service-oriented
- abstract logic programming

\[\exists \{x, y\} \cdot \text{sorted}(2, 3, x, y, 5) \]
\[\chi: \langle F, P \rangle \mapsto \langle F \cup \{x, y\}, P \rangle \]

\[\exists \chi \cdot \text{sorted}(2, 3, x, y, 5) \]
A multitude of variants

- relational first-order logic
- many-sorted equational logic
- higher-order logic
- hidden algebra
- institution-independent
- service-oriented
- abstract logic programming
A multitude of variants

- relational first-order logic
- many-sorted equational logic
- higher-order logic
- hidden algebra
- institution-independent
- service-oriented
- abstract logic programming

\[\Sigma \vdash \sum_{\Sigma}(X) \iff \text{Mod}_{\Sigma}(X) \]

\[\exists X \cdot \rho \]
Institutions as functors

- Each institution $I = \langle \text{Sig}, \text{Sen}, \text{Mod}, \models \rangle$ can be identified with a functor $I : \text{Sig} \to \text{Room}$ where $I(\Sigma) = \langle \text{Sen}(\Sigma), \text{Mod}(\Sigma), \models_\Sigma \rangle$.

- Similarly, substitution systems can be defined as functors $S : \text{Subst} \to G / \text{Room}$.

Rooms and corridors

\[\langle S, M, \models \rangle \xrightarrow{\alpha} \langle S', M', \models' \rangle \xrightarrow{\beta} \]

Timeline:

- Herbrand 1929
- Robinson 1965
- Lloyd 1984
- 2004
- 2014
From institutions to substitution systems

- let Q be a class of signature morphisms of an institution $I : \text{Sig} \rightarrow \text{Room}$

For every I-signature Σ we obtain a substitution system $\mathcal{SI}_Q^I : \text{Subst}_Q^I \rightarrow I(\Sigma) / \text{Room}$:

- the objects of Subst_Q^I are signature morphisms $\chi : \Sigma \rightarrow \Sigma(\chi)$ belonging to Q
- a Σ-substitution $\psi : \chi_1 \rightarrow \chi_2$ is a corridor $\langle \text{Sen}_\Sigma(\psi), \text{Mod}_\Sigma(\psi) \rangle : I(\Sigma(\chi_1)) \rightarrow I(\Sigma(\chi_2))$
Quantification spaces

- for every subcategory $Q \subseteq \text{Sig}^\sim$, the functor $\text{dom}: Q \to \text{Sig}$ gives rise to a natural transformation $\iota_Q: (_ / Q) \Rightarrow \text{dom}^{\text{op}} \circ (_ / C)$

Definition. Q is said to be a quantification space for an institution $J: \text{Sig} \to \text{Room}$ if

1. every arrow in Q forms a pushout in Sig, and
2. ι_Q is a natural isomorphism.
Quantification spaces

- for every subcategory \(Q \subseteq \text{Sig}^-\), the functor \(\text{dom}: Q \to \text{Sig}\) gives rise to a natural transformation \(\iota_Q: (_/Q) \Rightarrow \text{dom}^{\text{op}}; (_/C)\)

Definition. \(Q\) is said to be a quantification space for an institution \(J: \text{Sig} \to \text{Room}\) if

1. every arrow in \(Q\) forms a pushout in \(\text{Sig}\), and
2. \(\iota_Q\) is a natural isomorphism.
Representable signature extensions

Definition. An extension $\chi: \Sigma \to \Sigma(\chi)$ is *representable* if there exist

- a Σ-model M_χ and
- an isomorphism of categories i_χ

such that the following diagram commutes:

\[
\begin{array}{ccc}
\text{Mod}(\Sigma) & \xrightarrow{- \lvert_\chi} & \text{Mod}(\Sigma(\chi)) \\
\uparrow & & \downarrow \text{forgetful} \\
\text{Mod}(\Sigma(\chi)) & \xrightarrow{i_\chi} & M_\chi / \text{Mod}(\Sigma)
\end{array}
\]
Representable signature extensions

Proposition. The representation of signature extensions generalizes to a functor $R_{\Sigma}^Q : \text{Subst}_\Sigma^Q \to \text{Mod}(\Sigma)$, where

- for every $\chi : \Sigma \to \Sigma(\chi)$ in $|Q|$, $R_{\Sigma}^Q(\chi) = M_\chi$,
- for every substitution $\psi : \chi_1 \to \chi_2$, $R_{\Sigma}^Q(\psi) = (i_{\chi_2}^{-1} \circ \text{Mod}_\Sigma(\psi) \circ i_{\chi_1})(1_{M_\chi_2})$.

Moreover, for every Σ-substitution ψ, $\text{Mod}_\Sigma(\psi)$ is uniquely determined by $R_{\Sigma}^Q(\psi)$.

Herbrand

1929

Robinson

1965

Lloyd

1984

2004

2014
Proposition. Every morphism of signatures \(\varphi : \Sigma \to \Sigma' \) gives rise to a functor \(\Psi_\varphi : \text{Subst}_\Sigma \to \text{Subst}_{\Sigma'} \) defined as follows:
Deriving generalized substitution systems

Theorem. Every institution $I: \text{Sig} \to \text{Room}$ equipped with

- an adequate quantification space \mathcal{Q} of representable signature extensions and
- compatible categories Subst_Σ of \mathcal{Q}-representable Σ-substitutions,

determines a generalized substitution system that has model amalgamation.
Herbrand’s theorem revisited

Let \(\langle \Sigma, \Gamma \rangle \) be a LP and \(\exists \chi \cdot \rho \) a query such that

- \(\Sigma \) and \(\langle \Sigma, \Gamma \rangle \) have initial models \(o_{\Sigma} \) and \(o_{\Sigma,\Gamma} \),
- \(M_\chi \) is projective with respect to the unique homomorphism \(\Gamma !: o_{\Sigma} \to o_{\Sigma,\Gamma} \), and
- the sentence \(\rho \) is basic.

The following statements are equivalent:

1. \(\Gamma \models_{\Sigma} \exists \chi \cdot \rho. \)
2. \(o_{\Sigma,\Gamma} \models_{\Sigma} \exists \chi \cdot \rho. \)
3. \(\exists \chi \cdot \rho \) admits a \(\Gamma \)-solution.
Thank you!
Further Reading

