The Open Algebraic Path Problem

CALCO - Jade Master - Sep 32021

Table of Contents

1. The Algebraic Path Problem
2. The Universal Property of the Algebraic Path Problem
3. Applications to Compositionality

§1: Shortest Paths

The shortest path problem asks for the sequence of edges between a given pair of vertices with minimum total distance.

§1: Shortest Paths

The shortest path problem asks for the sequence of edges between a given pair of vertices with minimum total distance.

$$
\begin{aligned}
& \begin{array}{|c|c|}
\hline \text { path } & \text { total length } \\
\hline(\mathrm{a}, \mathrm{~b}) & 3.14 \\
\hline(\mathrm{a}, \mathrm{c})(\mathrm{c}, \mathrm{~b}) & 52+4=56 \\
\hline
\end{array} \\
& \text { shortest path }=\min _{\text {paths } \mathrm{p}}\{\text { length }(p)\} \\
& =\min \{3.14,56\}=3.14
\end{aligned}
$$

What structure allows us to generalize this?

§1: Semirings

- A semiring $(R,+, \cdot)$ is like a ring except + is only a monoid and need not have negatives.

Example

The natural numbers \mathbb{N} form a semiring with the usual + and .

Motivating Example

$[0, \infty]$ with min as the additive monoid and + as the multiplicative monoid.

§1: Semirings

- A semiring $(R,+, \cdot)$ is like a ring except + is only a monoid and need not have negatives.

Example

The natural numbers \mathbb{N} form a semiring with the usual + and .

Motivating Example

$[0, \infty]$ with min as the additive monoid

Warning!

This example can be very confusing

addition	\min
multiplication	+
additive identity	∞
multiplicative identity	0

The Algebraic Path Problem

§1: The Algebraic Path Problem

Let X be a set of vertices.
Let $M: X \times X \rightarrow R$ be an R-matrix.

Definition

An edge in M is a pair of vertices (a, b).
A path in M is a sequence of edges

$$
p=\left\{\left(i, a_{1}\right),\left(a_{1}, a_{2}\right), \ldots,\left(a_{n}, j\right)\right\} .
$$

The weight $w(p)$ of a path p is the product in R

$$
M\left(i, a_{1}\right) M\left(a_{1}, a_{2}\right) \ldots M\left(a_{n}, j\right) .
$$

§1: The Algebraic Path Problem

Let X be a set of vertices.
Let $M: X \times X \rightarrow R$ be an R-matrix.

Definition

An edge in M is a pair of vertices (a, b).
A path in M is a sequence of edges

$$
p=\left\{\left(i, a_{1}\right),\left(a_{1}, a_{2}\right), \ldots,\left(a_{n}, j\right)\right\}
$$

The weight $w(p)$ of a path p is the product in R

$$
M\left(i, a_{1}\right) M\left(a_{1}, a_{2}\right) \ldots M\left(a_{n}, j\right) .
$$

For $i, j \in X$, Let

$$
P_{i j}=\{\text { paths } p \text { from } i \text { to } j\}
$$

The shortest path is

$$
\min _{p \in P_{i j}}\{\text { length }(p)\}
$$

The algebraic path problem asks for

$$
\sum_{p \in P_{i j}} w(p)
$$

There are lots of examples!

semiring	sum	product	solution of path problem
$[0, \infty]$	inf	+	shortest paths in a weighted graph
$[0, \infty]$	sup	inf	maximum capacity in the tunnel problem
$[0,1]$	sup	\times	most likely paths in a Markov process
$\{T, F\}$	or	and	transitive closure of a directed graph
$\left(\mathcal{P}\left(\Sigma^{*}\right), \subseteq\right)$	\bigcup	concatenation	decidable language of a NFA

The Universal Property of the Algebraic Path Problem

§2: Why Matrices?

Idea

M^{n} has entries $M^{n}(i, j)$ given by the length of the shortest path from i to j with exactly n-steps.

When $R=[0, \infty]$,

$$
\begin{aligned}
M^{2}(i, j) & =\sum_{k \in X} M(i, k) M(k, j) \\
& =\min _{k \in X}\{M(i, k)+M(k, j)\}
\end{aligned}
$$

§2: Why Matrices?

The pointwise minimum

Idea

M^{n} has entries $M^{n}(i, j)$ given by the length of the shortest path from i to j with exactly n-steps.

When $R=[0, \infty]$,

$$
\begin{aligned}
M^{2}(i, j) & =\sum_{k \in X} M(i, k) M(k, j) \\
& =\min _{k \in X}\{M(i, k)+M(k, j)\}
\end{aligned}
$$

$$
F(M)(i, j)=\min _{n \geq 0}\left\{M^{n}(i, j)\right\}
$$

gives solutions to the algebraic path problem.
For an arbitrary R

$$
F(M)(i, j)=\sum_{n \geq 0} M^{n}(i, j)
$$

Next will see how this is the formula for the "free R-enriched category on M ".

§2: Free Categories

Idea

Paths of length n in G are given by iterated pullbacks of G with itself.

A graph is a diagram of sets and functions

$$
E \underset{t}{\stackrel{s}{\rightrightarrows}} V
$$

take the pullback with itself

§2: Free Categories

Idea

Paths of length n in G are given by iterated pullbacks of G with itself.

A graph is a diagram of sets and functions

$$
E \xrightarrow[t]{\stackrel{s}{\rightrightarrows}} V
$$

take the pullback with itself
Edges of $G^{2}=\left\{\left(e, e^{\prime}\right) \in E \times E \mid t(e)=s(e)\right\}$
taking the n-fold pulback gives G^{n} with
Edges of $G^{n}=\{$ paths of length n in $G\}$.
The coproduct

$$
F(G)=\coprod_{n \geq 0} G^{n}
$$

is the free category.

Proposition

There is an adjunction

$U(C)=$ the underlying graph of C $F(G)=\coprod_{n \geq 0} G^{n}$.

Generalizes to...

Proposition

There is an adjunction

$U(C)=$ the underlying graph of C $F(G)=\coprod_{n \geq 0} G^{n}$.

Generalizes to...

Proposition

For a monoidal closed category \mathcal{V} with countable coproducts there is an adjunction

- A semiring R may be turned into a poset suitable for enrichment
- An R-enriched graph is an R-matrix.

A semiring $(R,+, \cdot)$ becomes a poset with $a \leq b \Longleftrightarrow \exists c$ s.t. $a+c=b$

V	R
objects	elements
morphisms	\leq
\amalg	\sum
\otimes	\cdot
distr. of \amalg over \otimes	distr. of + over \cdot

Warning!

This gives $[0, \infty]$ the reverse of the usual ordering.

A semiring $(R,+, \cdot)$ becomes a poset with $a \leq b \Longleftrightarrow \exists c$ s.t. $a+c=b$

V	R
objects	elements
morphisms	\leq
\lfloor	\sum
\otimes	\cdot
distr. of \amalg over \otimes	distr. of + over •

Warning!

This gives $[0, \infty]$ the reverse of the usual ordering.

Proposition

For a quantale R, there is an adjunction

Realization!

The left adjoint F gives solutions to the algebraic path problem.

§2: Now We're in Business

Big Idea

Let $M: X \times X \rightarrow R$ be an R-matrix and let $i, j \in X$. The entry of the free R-category on M

$$
F(M)(i, j)=\sum_{n \geq 0} M^{n}(i, j)
$$

is the solution to the algebraic path problem on M from i to j.

§2: Now We're in Business

Big Idea

Let $M: X \times X \rightarrow R$ be an R-matrix and let $i, j \in X$. The entry of the free R-category on M

$$
F(M)(i, j)=\sum_{n \geq 0} M^{n}(i, j)
$$

is the solution to the algebraic path problem on M from i to j.

- R-matrices may be joined together using colimits
- Left adjoints preserve colimits
- Can this help us glue together solutions?

Applications

§3: Compositionality

Algorithms for the algebraic path problem have $O\left(V^{3}\right)$ complexity.

Question

Can solutions to the APP be built up from smaller components?

§3: Compositionality

Algorithms for the algebraic path problem have $O\left(V^{3}\right)$ complexity.

Question

Can solutions to the APP be built up from smaller components?

Idea

To glue graphs together first designate some of the vertices as inputs or outputs.

§3: Building Graphs with Composition

$$
G: X \rightarrow Y
$$

$$
H: Y \rightarrow Z
$$

§3: Building Graphs with Composition

$$
G: X \rightarrow Y
$$

$H: Y \rightarrow Z$

$$
H \circ G: X \rightarrow Z
$$

- "Open R-matrices" are cospans in RMat
- They are glued together with pushouts
- For overlapping weights we use min

The Good News

Left adjoints preserve pushouts so

$$
F(H \circ M a t) \cong F(H) \circ C_{a t} F(G)
$$

where $\circ_{M a t}$ is the pushout of R-matrices and ${ }^{\circ} C_{a t}$ is the pushout of R-categories.

The Bad News

Pushouts of categories are hard.

The Good News Again

Under certain circumstances they get
easier.

The Good News

Left adjoints preserve pushouts so

$$
F(H \circ M a t) \cong F(H) \circ C_{a t} F(G)
$$

where $\circ_{M a t}$ is the pushout of R-matrices and ${ }^{\circ} C_{a t}$ is the pushout of R-categories.

The Bad News

Pushouts of categories are hard.

The Good News Again

Under certain circumstances they get easier.

Theorem (JEM)

For "functional open R-matrices"
$G: X \rightarrow Y$ and $H: Y \rightarrow Z$, there is an equality

$$
\square(H \circ M a t)=\square(H) \square(G)
$$

where the product on the right hand is matrix multiplication.

- What is a functional open R-matrix?
- What does \square mean?

§2: Black-boxing

Idea

Focus on the inputs and outputs and forget about the rest.

§2: Black-boxing

For an open R-matrix $G: X \rightarrow Y$ its black-boxing is the R-matrix

$$
■(G): X \times Y \rightarrow R
$$

with values
$\square(G)(x, y)=$ solution of APP from x to y

§2: Matrix Multiplication does not Preserve Gluing

§2: Matrix Multiplication does not Preserve Gluing

$$
\begin{gathered}
\square(G: X \rightarrow Y)=\left[\begin{array}{lll}
.1 & \infty & \infty
\end{array}\right]^{\top} \\
\square(H: Y \rightarrow Z)=\left[\begin{array}{lll}
\infty & \infty & .1
\end{array}\right] \\
\square(G) \square(H)=[\infty]
\end{gathered}
$$

On the other hand. . .

$$
\square\left(H \circ{ }_{M a t} G\right)=[0.4]
$$

Idea

A functional open R-matrix has no edges going into its inputs and no edges going out of its outputs.

Further Questions

Theorem

For functional open R-matrices
$G: X \rightarrow Y$ and $H: Y \rightarrow Z$, there is an equality

$$
\square(H \circ G)=\square(H) \square(G) \text {. }
$$

For more see..

- Composing Behaviors of Networks, Ph.D. Thesis.
- Watch a more detailed version of this talk here:
https://youtu.be/inH26ggKJfc

Further Questions

Theorem

For functional open R-matrices
$G: X \rightarrow Y$ and $H: Y \rightarrow Z$, there is an equality

$$
\square(H \circ G)=\square(H) \square(G)
$$

For more see..

- Composing Behaviors of Networks, Ph.D. Thesis.
- Watch a more detailed version of this talk here:
https://youtu.be/inH26ggKJfc
- Compositionalmarkov, Github repo in Python
- OpenStarSemiring.Ihs, Github gist in Haskell by Sjoerd Visscher
- Coalgebraic trace semantics?

