The Open Algebraic Path Problem

CALCO - Jade Master - Sep 3 2021

Table of Contents

- 1. The Algebraic Path Problem
- 2. The Universal Property of the Algebraic Path Problem
- 3. Applications to Compositionality

§1: Shortest Paths

The shortest path problem asks for the sequence of edges between a given pair of vertices with minimum total distance.

§1: Shortest Paths

The shortest path problem asks for the sequence of edges between a given pair of vertices with minimum total distance.

path	total length
(a,b)	3.14
(a,c) (c,b)	52+4=56

shortest path =
$$\min_{\text{paths p}} \{ \text{length}(p) \}$$

= $\min \{ 3.14, 56 \} = 3.14$

What structure allows us to generalize this?

§1: Semirings

• A semiring $(R, +, \cdot)$ is like a ring except + is only a monoid and need not have negatives.

Example

The natural numbers $\mathbb N$ form a semiring with the usual + and \cdot .

Motivating Example

 $[0,\infty]$ with min as the additive monoid and + as the multiplicative monoid.

§1: Semirings

• A semiring $(R, +, \cdot)$ is like a ring except + is only a monoid and need not have negatives.

Example

The natural numbers $\mathbb N$ form a semiring with the usual + and \cdot .

Motivating Example

 $[0,\infty]$ with min as the additive monoid and + as the multiplicative monoid.

Warning!

This example can be very confusing

addition	min
multiplication	+
additive identity	∞
multiplicative identity	0

The Algebraic Path Problem

§1: The Algebraic Path Problem

Let X be a set of vertices.

Let $M: X \times X \to R$ be an R-matrix.

Definition

An **edge** in M is a pair of vertices (a, b).

A path in M is a sequence of edges

$$p = \{(i, a_1), (a_1, a_2), \dots, (a_n, j)\}.$$

The **weight** w(p) of a path p is the product in R

$$M(i,a_1)M(a_1,a_2)\ldots M(a_n,j).$$

§1: The Algebraic Path Problem

Let X be a set of vertices.

Let $M: X \times X \to R$ be an R-matrix.

Definition

An **edge** in M is a pair of vertices (a, b). A **path** in M is a sequence of edges

$$p = \{(i, a_1), (a_1, a_2), \dots, (a_n, j)\}.$$

The **weight** w(p) of a path p is the product in R

$$M(i, a_1)M(a_1, a_2) \dots M(a_n, j).$$

For $i, j \in X$, Let

$$P_{ij} = \{ paths p from i to j \}$$

The shortest path is

$$\min_{p \in P_{ij}} \{ \mathsf{length}(p) \}$$

The **algebraic path problem** asks for

$$\sum_{p\in P_{ij}}w(p).$$

There are lots of examples!

semiring	sum	product	solution of path problem
$[0,\infty]$	inf	+	shortest paths in a weighted graph
$[0,\infty]$	sup	inf	maximum capacity in the tunnel problem
[0, 1]	sup	×	most likely paths in a Markov process
$\{T,F\}$	or	and	transitive closure of a directed graph
$(\mathcal{P}(\Sigma^*),\subseteq)$	U	concatenation	decidable language of a NFA

The Universal Property of the

Algebraic Path Problem

§2: Why Matrices?

Idea

 M^n has entries $M^n(i,j)$ given by the length of the shortest path from i to j with exactly n-steps.

When
$$R = [0, \infty]$$
,
$$M^{2}(i,j) = \sum_{k \in X} M(i,k)M(k,j)$$
$$= \min_{k \in X} \{M(i,k) + M(k,j)\}$$

§2: Why Matrices?

Idea

 M^n has entries $M^n(i,j)$ given by the length of the shortest path from i to j with exactly n-steps.

When
$$R=[0,\infty]$$
,

$$M^{2}(i,j) = \sum_{k \in X} M(i,k)M(k,j)$$
$$= \min_{k \in X} \{M(i,k) + M(k,j)\}$$

The pointwise minimum

$$F(M)(i,j) = \min_{n \ge 0} \{M^n(i,j)\}$$

gives solutions to the algebraic path problem.

For an arbitrary R

$$F(M)(i,j) = \sum_{n\geq 0} M^n(i,j)$$

Next will see how this is the formula for the "free R-enriched category on M".

§2: Free Categories

Idea

Paths of length n in G are given by iterated pullbacks of G with itself.

A graph is a diagram of sets and functions

$$E \stackrel{s}{\longrightarrow} V$$

take the pullback with itself

§2: Free Categories

Idea

Paths of length n in G are given by iterated pullbacks of G with itself.

A graph is a diagram of sets and functions

$$E \stackrel{s}{\Longrightarrow} V$$

take the pullback with itself

$$G^{2} = \bigcup_{v \in V} E \bigcup_{v \in V} E$$

Edges of $G^2 = \{(e, e') \in E \times E \mid t(e) = s(e)\}$

taking the n-fold pulback gives G^n with

Edges of $G^n = \{ \text{paths of length } n \text{ in } G \}.$

The coproduct

$$F(G) = \coprod_{n \geq 0} G^n$$

is the free category.

Proposition

There is an adjunction

Grph
$$\stackrel{F}{\underset{U}{\longleftarrow}}$$
 Cat

$$U(C)$$
 = the underlying graph of C
 $F(G) = \coprod_{n \ge 0} G^n$.

Generalizes to...

Proposition

There is an adjunction

Grph
$$\bigcup_{U}^{F}$$
 Car

$$U(C)$$
 = the underlying graph of C
 $F(G) = \coprod_{n>0} G^n$.

Generalizes to...

Proposition

For a monoidal closed category $\ensuremath{\mathcal{V}}$ with countable coproducts there is an adjunction

$$V$$
Grph U V Cat

- A semiring R may be turned into a poset suitable for enrichment
- An *R*-enriched graph is an *R*-matrix.

A semiring $(R, +, \cdot)$ becomes a poset with $a \le b \iff \exists c \text{ s.t. } a + c = b$

V	R
objects	elements
morphisms	<u> </u>
П	Σ
\otimes	•
distr. of \coprod over \otimes	distr. of $+$ over \cdot

Warning!

This gives $[0,\infty]$ the reverse of the usual ordering.

A semiring $(R, +, \cdot)$ becomes a poset with $a \le b \iff \exists c \text{ s.t. } a + c = b$

V	R
objects	elements
morphisms	<u> </u>
П	Σ
\otimes	
distr. of \coprod over \otimes	distr. of $+$ over \cdot

Warning!

This gives $[0, \infty]$ the reverse of the usual ordering.

Proposition

For a quantale R, there is an adjunction

Realization!

The left adjoint F gives solutions to the algebraic path problem.

§2: Now We're in Business

Big Idea

Let $M: X \times X \to R$ be an R-matrix and let $i, j \in X$. The entry of the free R-category on M

$$F(M)(i,j) = \sum_{n \ge 0} M^n(i,j)$$

is the solution to the algebraic path problem on M from i to j.

§2: Now We're in Business

Big Idea

Let $M: X \times X \to R$ be an R-matrix and let $i, j \in X$. The entry of the free R-category on M

$$F(M)(i,j) = \sum_{n\geq 0} M^n(i,j)$$

is the solution to the algebraic path problem on M from i to j.

- R-matrices may be joined together using colimits
- Left adjoints preserve colimits
- Can this help us glue together solutions?

Applications

§3: Compositionality

Algorithms for the algebraic path problem have $O(V^3)$ complexity.

Question

Can solutions to the APP be built up from smaller components?

§3: Compositionality

Algorithms for the algebraic path problem have $O(V^3)$ complexity.

Question

Can solutions to the APP be built up from smaller components?

Idea

To glue graphs together first designate some of the vertices as inputs or outputs.

§3: Building Graphs with Composition

$$G\colon X\to Y$$

$$H\colon Y\to Z$$

§3: Building Graphs with Composition

$$G: X \to Y$$

 $H\colon Y\to Z$

 $H \circ G \colon X \to Z$

- "Open *R*-matrices" are cospans in RMat
- They are glued together with pushouts
- For overlapping weights we use min

The Good News

Left adjoints preserve pushouts so

$$F(H \circ_{Mat} G) \cong F(H) \circ_{Cat} F(G)$$

where \circ_{Mat} is the pushout of *R*-matrices and \circ_{Cat} is the pushout of *R*-categories.

The Bad News

Pushouts of categories are hard.

The Good News Again

Under certain circumstances they get easier.

The Good News

Left adjoints preserve pushouts so

$$F(H \circ_{Mat} G) \cong F(H) \circ_{Cat} F(G)$$

where \circ_{Mat} is the pushout of *R*-matrices and \circ_{Cat} is the pushout of *R*-categories.

The Bad News

Pushouts of categories are hard.

The Good News Again

Under certain circumstances they get easier.

Theorem (JEM)

For "functional open R-matrices" $G\colon X\to Y$ and $H\colon Y\to Z$, there is an equality

$$\blacksquare(H \circ_{Mat} G) = \blacksquare(H)\blacksquare(G)$$

where the product on the right hand is matrix multiplication.

- What is a functional open *R*-matrix?
- What does mean?

§2: Black-boxing

Idea

Focus on the inputs and outputs and forget about the rest.

§2: Black-boxing

Idea

Focus on the inputs and outputs and forget about the rest.

For an open R-matrix $G: X \to Y$ its **black-boxing** is the R-matrix

$$\blacksquare$$
(*G*): $X \times Y \rightarrow R$

with values

$$\blacksquare$$
(G)(x, y) = solution of APP from x to y

§2: Matrix Multiplication does not Preserve Gluing

§2: Matrix Multiplication does not Preserve Gluing

$$\blacksquare (G: X \to Y) = \begin{bmatrix} .1 & \infty & \infty \end{bmatrix}^T$$

$$\blacksquare (H\colon Y\to Z) = \begin{bmatrix} \infty & \infty & .1 \end{bmatrix}$$

$$\blacksquare(G)\blacksquare(H)=\left[\infty\right]$$

On the other hand...

$$\blacksquare (H \circ_{Mat} G) = \left[0.4\right]$$

Idea

A functional open *R*-matrix has no edges going into its inputs and no edges going out of its outputs.

16

Further Questions

Theorem

For functional open R-matrices $G: X \to Y$ and $H: Y \to Z$, there is an equality

$$\blacksquare(H\circ G)=\blacksquare(H)\blacksquare(G).$$

For more see..

- Composing Behaviors of Networks, Ph.D. Thesis.
- Watch a more detailed version of this talk here: https://youtu.be/inH26ggKJfc

Further Questions

Theorem

For functional open R-matrices $G\colon X\to Y$ and $H\colon Y\to Z$, there is an equality

$$\blacksquare(H\circ G)=\blacksquare(H)\blacksquare(G).$$

For more see..

- Composing Behaviors of Networks, Ph.D. Thesis.
- Watch a more detailed version of this talk here: https://youtu.be/inH26ggKJfc

- Compositionalmarkov, Github repo in Python
- OpenStarSemiring.lhs, Github gist in Haskell by Sjoerd Visscher
- Coalgebraic trace semantics?