Tao Gu, Fabio Zanasi University College London

Functorial Semantics as a Unifying Perspective on Logic Programming

Background

- A string diagram perspective of PLP
- Application: transformation between PLP and BN
- Classical logic programs, Weighted logic program
- Future work

Background

Probabilistic logic programs (PLP)

- A PLP clause ψ based on At is $p :: A \leftarrow L_1, \dots, L_m$, where:
 - $p \in [0,1]$
 - $A \in At$ is the head
 - $\{L_1, \ldots, L_m\} \subseteq At \cup \neg At \text{ is the body}$
- A PLP program $\mathbb{P} = \{\psi_1, ..., \psi_n\}.$

PLP example

• Example. \mathbb{P}_{wet} consists of the following 8 clauses:

0.25 ::	Winter	\leftarrow .	(ψ_1)
0.2 ::	Sprinkler	$\leftarrow \texttt{Winter}.$	(ψ_2)
0.6 ::	Rain	$\leftarrow \texttt{Winter}.$	(ψ_3)
0.1 ::	Rain	$\leftarrow \neg \texttt{Winter}.$	(ψ_4)

- (ψ_5) 0.9 :: WetGrass \leftarrow Sprinkler. (ψ_6) 0.8 :: WetGrass \leftarrow Rain. (ψ_7) SlipperyRoad 0.7 :: \leftarrow Rain.
- SlipperyRoad 0.1 :: $\leftarrow \neg \texttt{Rain}.$

 (ψ_8)

Semantics of acyclic PLP

- Idea: distribution semantics + negation as failure
- Distribution semantics
 - ▶ \mathbb{P} determines a distribution $\mu_{\mathbb{P}}$ on $\mathcal{P}(|\mathbb{P}|)$

$$Pr_{\mathbb{P}}(A) = \sum \{ \mu_{\mathbb{P}}(\mathbb{Q}) \mid \mathbb{Q} \subseteq |\mathbb{P}|, \mathbb{Q} \models A \}$$

- Negation as failure
 - $\neg A$ is true in \mathbb{P} if it is *not* finitely derivable/provable in \mathbb{P}
- We focus on acyclic PLP:
 - Relatively simple semantics (imprecise probabilities needed).
 - Expressive power: equivalent as boolean-valued Bayesian networks.

Functorial semantics

- F. W. Lawvere, Functorial Semantics of Algebraic Theories, Ph.D. thesis, Columbia University, 1963.
- Idea: algebras are functors (models) from syntax categories (e.g. Lawvere) theories) to semantics categories (e.g. Set).
- Example. Monoids \simeq Prod(\mathscr{L}_{Mon}^{op} , Set), where \mathscr{L}_{Mon} has natural numbers as objects, and morphisms $n \to m$ are $\langle t_1, ..., t_n \rangle$ of free monoids on $\{x_1, ..., x_m\}$.

Functorial semantics of

Categorical perspective of PLP

- We separate the syntax and semantics:
- The syntax describes the inferential structure
 - $p:: A \leftarrow L_1, \dots, L_m$ is clause $A \leftarrow B_1, \dots, B_m$, where B_i is the atom in literal L_i .
 - Example. The inferential structure of $A \leftarrow B_1$,
- The semantics determines the meaning of clauses
- Both are symmetric monoidal categories with additional structure.
- Functorial semantics: PLPs are exactly structure-preserving functors

F : SynCat -> SemCat

A definite logic program $\mathbb{L} := [\mathbb{P}]$ describes the inferential structure of \mathbb{P} : the inferential structure of

$$\neg B_2$$
. is $A \leftarrow B_1, B_2$. ($[A \leftarrow B_1, \neg B_2] = A \leftarrow B_1, B_2$.)

CDMU category

Definition. Every object has copier, discarder, multiplication, unit morphisms

Both the syntax and semantics categories of PLP are CDMU categories.

Syntax category

- ▶ $\mathbb{L} := [\mathbb{P}]$ determines a syntax category SynPLP₁ := freeCDMU(At, $\Sigma_{\mathbb{L}}$), where $\Sigma_{\mathbb{I}}$ is the set of generating morphisms, one for each \mathbb{L} -clause: $\Sigma_{\mathbb{L}} := \{ \begin{array}{c} B_1 \\ \vdots \\ P \end{array} \middle| \varphi \equiv A \leftarrow B_1, \dots, B_m. \text{ is a clause in } \mathbb{L} \} \}$
 - Objects: finite lists over At.
 - Norphisms: freely composed string diagrams using $\Sigma_{\mathbb{I}}$ and CDMU structure, modulo CDMU equations.
- Example. $\Sigma_{\mathbb{L}_{wat}}$ consists of 6 boxes:

Syntax category

 $\Sigma_{\mathbb{I}}$ is the set of generating morphisms, one for each \mathbb{L} -clause: $\Sigma_{\mathbb{L}} := \{ \begin{array}{c} B_1 \\ \vdots \\ B_m \end{array} \mid \varphi \equiv A \leftarrow B_1, \dots, B_m. \text{ is a clause in } \mathbb{L} \} \}$

- Objects: finite lists over At.
- modulo CDMU equations.
- Example. $\Sigma_{\mathbb{L}_{wat}}$ consists of 6 boxes:

▶ $\mathbb{L} := [\mathbb{P}]$ determines a syntax category SynPLP₁ := freeCDMU(At, $\Sigma_{\mathbb{L}}$), where

.25 ::	Winter	\leftarrow .	(ψ_1)	0.9 ::	WetGrass	$\leftarrow \texttt{Sprinkler}.$
0.2 ::	Sprinkler	$\leftarrow \texttt{Winter}.$	(ψ_2)	0.8 ::	WetGrass	$\leftarrow \texttt{Rain}.$
0.6 ::	Rain	$\leftarrow \texttt{Winter}.$	(ψ_3)	0.7 ::	SlipperyRoad	$\leftarrow \texttt{Rain}.$
0.1 ::	Rain	$\leftarrow \neg \texttt{Winter}.$	(ψ_4)	0.1 ::	SlipperyRoad	$\leftarrow \neg \texttt{Rain}.$

Norphisms: freely composed string diagrams using $\Sigma_{\mathbb{I}}$ and CDMU structure,

Semantics category

 $\blacktriangleright Kl(\mathcal{D})(\mathbf{2})$

• objects: finite products of $\mathbf{2}_A = \{\mathbf{0}_A, \mathbf{1}_A\}$.

> morphisms $X \to Y$ are functions $X \to \mathcal{D}(Y)$.

 $Kl(\mathcal{D})(\mathbf{2})$ is a CDMU category:

 $\begin{array}{cccc} \llbracket \blacktriangleleft_A \rrbracket_{\mathbb{P}} : \ \mathbf{2}_A \to \mathbf{2}_A \times \mathbf{2}_A & \llbracket \multimap_A \rrbracket_{\mathbb{P}} : \ \mathbf{2}_A \to \mathbf{1} & \llbracket \triangleright_A \rrbracket_{\mathbb{P}} : \ \mathbf{2}_A \times \mathbf{2}_A \to \mathbf{2}_A & \llbracket \multimap_A \rrbracket_{\mathbb{P}} : \ \mathbf{1} \to \mathbf{2}_A \\ & x \mapsto 1 | (x, x) \rangle & x \mapsto 1 | * \rangle & (x, y) & \mapsto 1 | x \lor y \rangle & & * \mapsto 1 | \neg A \rangle \end{array}$

Functorial semantics of PLP

- > Proposition. PLP programs based on $\mathbb{L} \simeq$ structure-preserving functors objects.
- boxes, namely the probability labels of the clauses.
- Example. \mathbb{P}_{wet} defines the functor $[[-]]_{\mathbb{P}_{wet}}$ such that:

 $[[-]]_{\mathbb{P}}$: SynPLP₁ $\rightarrow Kl(\mathcal{D})(2)$ mapping generating objects to generating

Idea: \mathbb{P} determines the functor $[[-]]_{\mathbb{P}}$'s action on the generating morphisms/

Atom probability

- A compositional diagrammatic presentation of atom probabilities.
- Example. the $[[]]_{\mathbb{P}_{wet}}$ -image of the following string diagram is Pr(Winter, WetGrass) in $\mathcal{D}(2_{Winter})$

$$\times 2_{WetGrass}$$
).

Application: transformations between PLP and BN

Functorial semantics of BN

- Idea:
 - Syntax: DAGs \rightarrow string diagrams. SynBN_G for a DAG G is FreeCD(V_G, Σ_G), where $\Sigma_G = \{ \begin{array}{c} B_1 \\ \vdots \\ B_m \end{array} \mid A \mid pa(A) = \{B_1, \dots, B_m\} \}$
 - Semantics: category of stochastic processes.
- structure-preserving functors $[[-]]_{\mathbb{B}}$: SynBN_G $\rightarrow Kl(\mathcal{D})(2)$.

> Proposition ([JKZ2019]). Boolean-valued Bayesian networks based on $G \simeq$

BN example

G_{wet} as string diagram

		$\Pr(\texttt{WetGrass})$
$\neg \texttt{Sprinkler}$	$\neg \texttt{Rain}$	0
$\neg \texttt{Sprinkler}$	Rain	0.8
Sprinkler	$\neg \texttt{Rain}$	0.9
Sprinkler	Rain	0.98

$$2_{Sprinkler} \times 2_{Rain} \rightarrow \mathcal{D}(2_{WetGrass})$$
 such that:

$$(0_{S}, 0_{R}) \mapsto 1 | 0_{W} \rangle$$

$$(0_{S}, 1_{R}) \mapsto 0.8 | 0_{W} \rangle + 0.2 | 0_{W} \rangle$$

$$(1_{S}, 0_{R}) \mapsto 0.9 | 0_{W} \rangle + 0.1 | 0_{W} \rangle$$

$$(1_{S}, 1_{R}) \mapsto 0.98 | 0_{W} \rangle + 0.02 | 0_{W} \rangle$$

PLP and BN

- Fact. Every boolean-valued Bayesian ground PLP, and vice versa.
- Categorically,

Fact. Every boolean-valued Bayesian network can be encoded as an acyclic

From BN to PLP

$\neg \texttt{Sprinkler}$	¬Rair
$\neg \texttt{Sprinkler}$	Rain
Sprinkler	¬Rair
Sprinkler	Rain

 $[[-]]_{\mathbb{P}}$ is $[[-]]_{\mathbb{R}}$ plus (routine) interpretation of multiplication and unit. $[[-]]_{\mathbb{B}}$

- 0:: WetGrass $\leftarrow \neg$ Sprinkler, \neg Rain.
- 0.8:: WetGrass $\leftarrow \neg$ Sprinkler, Rain.
- 0.9:: WetGrass \leftarrow Sprinkler, \neg Rain.
- 0.98:: WetGrass \leftarrow Sprinkler, Rain.

- Start from SynBN_G = freeCD(V_G, Σ_G), define SynPLP₁ as freeCDMU(V_G, Σ_G).

From PLP to BN

0.25 ::	Winter	\leftarrow .	(ψ_1)
0.2 ::	Sprinkler	$\leftarrow \texttt{Winter}.$	(ψ_2)
0.6 ::	Rain	$\leftarrow \texttt{Winter}.$	(ψ_3)
0.1 ::	Rain	$\leftarrow \neg \texttt{Winter}.$	(ψ_4)

0.9 ::	WetGrass	$\leftarrow \texttt{Sprinkler}.$	(ψ_5)
0.8 ::	WetGrass	\leftarrow Rain.	(ψ_6)
0.7 ::	SlipperyRoad	\leftarrow Rain.	(ψ_7)
0.1 ::	SlipperyRoad	$\leftarrow \neg \texttt{Rain}.$	(ψ_8)

		$\Pr(\texttt{WetGrass})$
$\neg \texttt{Sprinkler}$	$\neg \texttt{Rain}$	0
$\neg \texttt{Sprinkler}$	Rain	0.8
Sprinkler	$\neg \texttt{Rain}$	0.9
Sprinkler	Rain	0.98

From PLP to BN

- Observation. The PLP-to-BN transformation is syntactical.
- In words, to obtain the corresponding BN model (functor) of a PLP model (functor), it suffices to define a suitable functor between the two syntax categories.

Step 1

- all generating boxes in the latter with the same codomain into a single generating box in the former.
- **Example**.

Sprinkler WetGrass	$\in \Sigma_{\mathbb{I}}$
Rain WetGrass	

We define a BN-syntax category from the PLP-syntax category, by combining

Step 2

We inductively define a functor \mathcal{F} between the two syntax categories.

Example.

In general, $pa(A) \rightarrow A$ is mapped to comp(A):

comp(A)

Step 3

Classical, weighted LP

Idea

- > Syntax categories: remains the same.
- Semantics categories:
 - Classical LP: Set(2)
 - Probabilistic LP: $Kl(\mathcal{D})(2)$
 - Veighted LP: $Set(\mathscr{X})$
- $Kl(\mathcal{D})(2)$ is some 'Kleisli category' (morphisms are different), $Set(\mathcal{K})$ changes the 'base' (objects are different).

Interestingly, $Kl(\mathcal{D})(2)$ and $Set(\mathcal{K})$ are both variants of Set(2), but in different flavour:

Fixed-point style semantics

- We enrich the syntax categories to include 'feedback wires'.
- Consequently the semantics categories move from functions to relations.
- **Example**.

immediate consequence operator $T_{\mathbb{P}}$

supported models

Future work

- General case: variables may occur.
- Other logic-programming formalisms, e.g. CP-logic, LPAD.
- (MAP), most likely explanation (MEP), probabilistic inductive logic programming (PILP).

Diagrammatically represent PLP inference tasks, e.g. maximum a posteriori

Reference

- F. W. Lawvere, Functorial Semantics of Algebraic Theories, Ph.D. thesis, Columbia University, 1963.
- Brendon Fong. Causal theories: A categorical perspective of on bayesian networks. 2013. arXiv:1301.6201.
- Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal inference by string diagram surgery. CoRR, abs/1811.08338, 2018.