
Functorial Semantics as a Unifying
Perspective on Logic Programming

Tao Gu, Fabio Zanasi

University College London

▸ Background

▸ A string diagram perspective of PLP

▸ Application: transformation between PLP and BN

▸ Classical logic programs, Weighted logic program

▸ Future work

Background

Probabilistic logic programs (PLP)

▸ A PLP clause based on is , where:

▸

▸ is the head

▸ is the body

▸ A PLP program .

ψ At p :: A ← L1, …, Lm .

p ∈ [0,1]

A ∈ At

{L1 . …, Lm} ⊆ At ∪ ¬At

ℙ = {ψ1, …, ψn}

PLP example

▸ Example. consists of the following 8 clauses:ℙwet

Semantics of acyclic PLP
▸ Idea: distribution semantics + negation as failure

▸ Distribution semantics

▸ determines a distribution on

▸ =

▸ Negation as failure

▸ is true in if it is not finitely derivable/provable in

▸ We focus on acyclic PLP:

▸ Relatively simple semantics (imprecise probabilities needed).

▸ Expressive power: equivalent as boolean-valued Bayesian networks.

ℙ μℙ 𝒫(|ℙ |)

Prℙ(A) ∑ {μℙ(ℚ) ∣ ℚ ⊆ |ℙ | , ℚ ⊨ A}

¬A ℙ ℙ

Functorial semantics

▸ F. W. Lawvere, Functorial Semantics of Algebraic Theories, Ph.D. thesis,
Columbia University, 1963.

▸ Idea: algebras are functors (models) from syntax categories (e.g. Lawvere
theories) to semantics categories (e.g.).

▸ Example. Monoids , where has natural numbers as
objects, and morphisms are of free monoids on .

Set

≃ 𝖯𝗋𝗈𝖽(ℒop
Mon, Set) ℒMon

n → m ⟨t1, …, tn⟩ {x1, …, xm}

Functorial semantics of
PLP

Categorical perspective of PLP

▸ We separate the syntax and semantics:

▸ The syntax describes the inferential structure

▸ A definite logic program describes the inferential structure of : the inferential structure of
is clause , where is the atom in literal .

▸ Example. The inferential structure of is ()

▸ The semantics determines the meaning of clauses

▸ Both are symmetric monoidal categories with additional structure.

▸ Functorial semantics: PLPs are exactly structure-preserving functors

F : SynCat —> SemCat

𝕃 := [ℙ] ℙ
p :: A ← L1, …, Lm . A ← B1, …, Bm . Bi Li

A ← B1, ¬B2 . A ← B1, B2 . [A ← B1, ¬B2.] = A ← B1, B2 .

CDMU category

▸ Definition. Every object has copier, discarder, multiplication, unit morphisms

▸ satisfying:

▸ Both the syntax and semantics categories of PLP are CDMU categories.

CDMU equations

Syntax category

▸ determines a syntax category , where
 is the set of generating morphisms, one for each -clause:

▸ Objects: finite lists over .

▸ Morphisms: freely composed string diagrams using and CDMU structure,
modulo CDMU equations.

▸ Example. consists of 6 boxes:

𝕃 := [ℙ] 𝖲𝗒𝗇𝖯𝖫𝖯𝕃 := 𝖿𝗋𝖾𝖾𝖢𝖣𝖬𝖴(At, Σ𝕃)
Σ𝕃 𝕃

At

Σ𝕃

Σ𝕃wet

Σ𝕃 := { ∣ φ ≡ A ← B1, …, Bm . is a clause in 𝕃}

Syntax category

▸ determines a syntax category , where
 is the set of generating morphisms, one for each -clause:

▸ Objects: finite lists over .

▸ Morphisms: freely composed string diagrams using and CDMU structure,
modulo CDMU equations.

▸ Example. consists of 6 boxes:

𝕃 := [ℙ] 𝖲𝗒𝗇𝖯𝖫𝖯𝕃 := 𝖿𝗋𝖾𝖾𝖢𝖣𝖬𝖴(At, Σ𝕃)
Σ𝕃 𝕃

At

Σ𝕃

Σ𝕃wet

Σ𝕃 := { ∣ φ ≡ A ← B1, …, Bm . is a clause in 𝕃}

Semantics category

▸ category:

▸ objects: finite products of .

▸ morphisms are functions .

▸ is a CDMU category:

Kl(𝒟)(2) Kl(𝒟)(2)

2A = {0A,1A}

X → Y X → 𝒟(Y)

Kl(𝒟)(2)

Functorial semantics of PLP

▸ Proposition. PLP programs based on structure-preserving functors
 mapping generating objects to generating

objects.

▸ Idea: determines the functor ’s action on the generating morphisms/
boxes, namely the probability labels of the clauses.

▸ Example. defines the functor such that:

𝕃 ≃
[[−]]ℙ : 𝖲𝗒𝗇𝖯𝖫𝖯𝕃 → Kl(𝒟)(2)

ℙ [[−]]ℙ

ℙwet [[−]]ℙwet

0Rain ↦ 1 |0WetGrass⟩
1Rain ↦ 0.8 |1WetGrass⟩ + 0.2 |0WetGrass⟩

[[−]]ℙwet

Atom probability

▸ A compositional diagrammatic presentation of atom probabilities.

▸ Example. the -image of the following string diagram is
 in .

[[−]]ℙwet

Pr(𝚆𝚒𝚗𝚝𝚎𝚛, 𝚆𝚎𝚝𝙶𝚛𝚊𝚜𝚜) 𝒟(2𝚆𝚒𝚗𝚝𝚎𝚛 × 2𝚆𝚎𝚝𝙶𝚛𝚊𝚜𝚜)

Application: transformations
between PLP and BN

Functorial semantics of BN

▸ Idea:

▸ Syntax: DAGs —> string diagrams. for a DAG is ,
where

▸ Semantics: category of stochastic processes.

▸ Proposition ([JKZ2019]). Boolean-valued Bayesian networks based on
structure-preserving functors .

𝖲𝗒𝗇𝖡𝖭G G 𝖥𝗋𝖾𝖾𝖢𝖣(VG, ΣG)
ΣG = { ∣ pa(A) = {B1, …, Bm}}

G ≃
[[−]]𝔹 : 𝖲𝗒𝗇𝖡𝖭G → Kl(𝒟)(2)

BN example

▸ BN :𝔹wet

 as string diagramGwet

(0S,0R) ↦ 1 |0W⟩
(0S,1R) ↦ 0.8 |0W⟩ + 0.2 |0W⟩
(1S,0R) ↦ 0.9 |0W⟩ + 0.1 |0W⟩
(1S,1R) ↦ 0.98 |0W⟩ + 0.02 |0W⟩

2Sprinkler × 2Rain → 𝒟(2WetGrass) such that:

PLP and BN

▸ Fact. Every boolean-valued Bayesian network can be encoded as an acyclic
ground PLP, and vice versa.

▸ Categorically,

𝖲𝗒𝗇𝖫𝖯𝕃 𝖲𝗒𝗇𝖡𝖭G 𝖲𝗒𝗇𝖫𝖯𝕃′￼

Stoch(2) Stoch(2)

[[−]]ℙ

ℱ ι

(1)
(2)

(3)

[[−]]𝔹 [[−]]ℙ′￼

From BN to PLP

▸ Start from , define as .

▸ is plus (routine) interpretation of multiplication and unit.

▸

𝖲𝗒𝗇𝖡𝖭G = 𝖿𝗋𝖾𝖾𝖢𝖣(VG, ΣG) 𝖲𝗒𝗇𝖯𝖫𝖯𝕃 𝖿𝗋𝖾𝖾𝖢𝖣𝖬𝖴(VG, ΣG)

[[−]]ℙ [[−]]𝔹
𝖲𝗒𝗇𝖡𝖭G 𝖲𝗒𝗇𝖫𝖯𝕃′￼

Stoch(2) Stoch(2)

ι

(2)[[−]]𝔹 [[−]]ℙ′￼

0:: 𝖶𝖾𝗍𝖦𝗋𝖺𝗌𝗌 ← ¬𝖲𝗉𝗋𝗂𝗇𝗄𝗅𝖾𝗋, ¬𝖱𝖺𝗂𝗇 .
0.8:: 𝖶𝖾𝗍𝖦𝗋𝖺𝗌𝗌 ← ¬𝖲𝗉𝗋𝗂𝗇𝗄𝗅𝖾𝗋, 𝖱𝖺𝗂𝗇 .
0.9:: 𝖶𝖾𝗍𝖦𝗋𝖺𝗌𝗌 ← 𝖲𝗉𝗋𝗂𝗇𝗄𝗅𝖾𝗋, ¬𝖱𝖺𝗂𝗇 .

0.98:: 𝖶𝖾𝗍𝖦𝗋𝖺𝗌𝗌 ← 𝖲𝗉𝗋𝗂𝗇𝗄𝗅𝖾𝗋, 𝖱𝖺𝗂𝗇 .

From PLP to BN

From PLP to BN

▸ Observation. The PLP-to-BN transformation is syntactical.

▸ In words, to obtain the corresponding BN model (functor) of a PLP model
(functor), it suffices to define a suitable functor between the two syntax
categories.

Step 1

▸ We define a BN-syntax category from the PLP-syntax category, by combining
all generating boxes in the latter with the same codomain into a single
generating box in the former.

▸ Example.

∈ Σ𝕃 ∈ Σ𝔾

Step 2

▸ We inductively define a functor between the two syntax categories.

▸ Example.

▸ In general, is mapped to :

ℱ

pa(A) → A comp(A)

comp(A)

ℱ

Step 3

▸ We obtain the BN model by composition:

▸ Example.

▸ For instance,

[[−]]𝔹 = [[−]]ℙ ∘ ℱ

(0𝚂𝚙𝚛𝚒𝚗𝚔𝚕𝚎𝚛,1𝚁𝚊𝚒𝚗) ↦ 0.8 |1𝚆𝚎𝚝𝙶𝚛𝚊𝚜𝚜⟩ + 0.2 |0𝚆𝚎𝚝𝙶𝚛𝚊𝚜𝚜⟩

𝖲𝗒𝗇𝖫𝖯𝕃 𝖲𝗒𝗇𝖡𝖭G

Stoch(2)

[[−]]𝔹
(1)

ℱ

[[−]]ℙ

Classical, weighted LP

Idea

▸ Syntax categories: remains the same.

▸ Semantics categories:

▸ Classical LP:

▸ Probabilistic LP:

▸ Weighted LP:

▸ Interestingly, and are both variants of , but in different flavour:
 is some 'Kleisli category’ (morphisms are different), changes the

‘base’ (objects are different).

Set(2)

Kl(𝒟)(2)

Set(𝒦)

Kl(𝒟)(2) Set(𝒦) Set(2)
Kl(𝒟)(2) Set(𝒦)

Fixed-point style semantics

▸ We enrich the syntax categories to include ‘feedback wires’.

▸ Consequently the semantics categories move from functions to relations.

▸ Example.

immediate consequence operator supported modelsTℙ

Future work

▸ General case: variables may occur.

▸ Other logic-programming formalisms, e.g. CP-logic, LPAD.

▸ Diagrammatically represent PLP inference tasks, e.g. maximum a posteriori
(MAP), most likely explanation (MEP), probabilistic inductive logic
programming (PILP).

Thank you!

Reference

▸ F. W. Lawvere, Functorial Semantics of Algebraic Theories, Ph.D. thesis,
Columbia University, 1963.

▸ Brendon Fong. Causal theories: A categorical perspective of on bayesian
networks. 2013. arXiv:1301.6201.

▸ Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal inference by string
diagram surgery. CoRR, abs/1811.08338, 2018.

