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Background



Probabilistic logic programs (PLP)

▸ A PLP clause  based on  is     , where: 

▸  

▸  is the head 

▸  is the body 

▸ A PLP program .

ψ At p :: A ← L1, …, Lm .

p ∈ [0,1]

A ∈ At

{L1 . …, Lm} ⊆ At ∪ ¬At

ℙ = {ψ1, …, ψn}



PLP example

▸ Example.  consists of the following 8 clauses:ℙwet



Semantics of acyclic PLP
▸ Idea: distribution semantics + negation as failure 

▸ Distribution semantics 

▸  determines a distribution  on  

▸  =  

▸ Negation as failure 

▸  is true in  if it is not finitely derivable/provable in  

▸ We focus on acyclic PLP: 

▸ Relatively simple semantics (imprecise probabilities needed). 

▸ Expressive power: equivalent as boolean-valued Bayesian networks.

ℙ μℙ 𝒫( |ℙ | )

Prℙ(A) ∑ {μℙ(ℚ) ∣ ℚ ⊆ |ℙ | , ℚ ⊨ A}

¬A ℙ ℙ



Functorial semantics

▸ F. W. Lawvere, Functorial Semantics of Algebraic Theories, Ph.D. thesis, 
Columbia University, 1963. 

▸ Idea: algebras are functors (models) from syntax categories (e.g. Lawvere 
theories) to semantics categories (e.g. ). 

▸ Example. Monoids  , where  has natural numbers as 
objects, and morphisms  are  of free monoids on .

Set

≃ 𝖯𝗋𝗈𝖽(ℒop
Mon, Set) ℒMon

n → m ⟨t1, …, tn⟩ {x1, …, xm}



Functorial semantics of 
PLP



Categorical perspective of PLP

▸ We separate the syntax and semantics: 

▸ The syntax describes the inferential structure 

▸ A definite logic program  describes the inferential structure of : the inferential structure of 
is clause , where  is the atom in literal . 

▸ Example. The inferential structure of  is ( ) 

▸ The semantics determines the meaning of clauses 

▸ Both are symmetric monoidal categories with additional structure. 

▸ Functorial semantics: PLPs are exactly structure-preserving functors 

F : SynCat —> SemCat

𝕃 := [ℙ] ℙ
p :: A ← L1, …, Lm . A ← B1, …, Bm . Bi Li

A ← B1, ¬B2 . A ← B1, B2 . [A ← B1, ¬B2.] = A ← B1, B2 .



CDMU category

▸ Definition. Every object has copier, discarder, multiplication, unit morphisms 

▸ satisfying: 

▸ Both the syntax and semantics categories of PLP are CDMU categories.

CDMU equations 



Syntax category

▸  determines a syntax category , where 
 is the set of generating morphisms, one for each -clause: 

▸ Objects: finite lists over .  

▸ Morphisms: freely composed string diagrams using  and CDMU structure, 
modulo CDMU equations. 

▸ Example.  consists of 6 boxes:

𝕃 := [ℙ] 𝖲𝗒𝗇𝖯𝖫𝖯𝕃 := 𝖿𝗋𝖾𝖾𝖢𝖣𝖬𝖴(At, Σ𝕃)
Σ𝕃 𝕃

At

Σ𝕃

Σ𝕃wet

Σ𝕃 := { ∣ φ ≡ A ← B1, …, Bm . is a clause in 𝕃}



Syntax category

▸  determines a syntax category , where 
 is the set of generating morphisms, one for each -clause: 

▸ Objects: finite lists over .  

▸ Morphisms: freely composed string diagrams using  and CDMU structure, 
modulo CDMU equations. 

▸ Example.  consists of 6 boxes:

𝕃 := [ℙ] 𝖲𝗒𝗇𝖯𝖫𝖯𝕃 := 𝖿𝗋𝖾𝖾𝖢𝖣𝖬𝖴(At, Σ𝕃)
Σ𝕃 𝕃

At

Σ𝕃

Σ𝕃wet

Σ𝕃 := { ∣ φ ≡ A ← B1, …, Bm . is a clause in 𝕃}



Semantics category

▸ category:  

▸ objects: finite products of . 

▸ morphisms  are functions . 

▸  is a CDMU category:

Kl(𝒟)(2) Kl(𝒟)(2)

2A = {0A,1A}

X → Y X → 𝒟(Y)

Kl(𝒟)(2)



Functorial semantics of PLP

▸ Proposition. PLP programs based on   structure-preserving functors 
 mapping generating objects to generating 

objects. 

▸ Idea:  determines the functor ’s action on the generating morphisms/
boxes, namely the probability labels of the clauses. 

▸ Example.  defines the functor  such that:

𝕃 ≃
[[ − ]]ℙ : 𝖲𝗒𝗇𝖯𝖫𝖯𝕃 → Kl(𝒟)(2)

ℙ [[ − ]]ℙ

ℙwet [[ − ]]ℙwet

0Rain ↦ 1 |0WetGrass⟩
1Rain ↦ 0.8 |1WetGrass⟩ + 0.2 |0WetGrass⟩

[[ − ]]ℙwet



Atom probability

▸ A compositional diagrammatic presentation of atom probabilities. 

▸ Example. the -image of the following string diagram is 
 in .

[[ − ]]ℙwet

Pr(𝚆𝚒𝚗𝚝𝚎𝚛, 𝚆𝚎𝚝𝙶𝚛𝚊𝚜𝚜) 𝒟(2𝚆𝚒𝚗𝚝𝚎𝚛 × 2𝚆𝚎𝚝𝙶𝚛𝚊𝚜𝚜)



Application: transformations 
between PLP and BN



Functorial semantics of BN

▸ Idea:  

▸ Syntax: DAGs —> string diagrams.  for a DAG  is , 
where  

▸ Semantics: category of stochastic processes. 

▸ Proposition ([JKZ2019]). Boolean-valued Bayesian networks based on   
structure-preserving functors .

𝖲𝗒𝗇𝖡𝖭G G 𝖥𝗋𝖾𝖾𝖢𝖣(VG, ΣG)
ΣG = { ∣ pa(A) = {B1, …, Bm}}

G ≃
[[ − ]]𝔹 : 𝖲𝗒𝗇𝖡𝖭G → Kl(𝒟)(2)



BN example

▸ BN :𝔹wet

 as string diagramGwet

(0S,0R) ↦ 1 |0W⟩
(0S,1R) ↦ 0.8 |0W⟩ + 0.2 |0W⟩
(1S,0R) ↦ 0.9 |0W⟩ + 0.1 |0W⟩
(1S,1R) ↦ 0.98 |0W⟩ + 0.02 |0W⟩

2Sprinkler × 2Rain → 𝒟(2WetGrass) such that:



PLP and BN

▸ Fact. Every boolean-valued Bayesian network can be encoded as an acyclic 
ground PLP, and vice versa. 

▸ Categorically,  

𝖲𝗒𝗇𝖫𝖯𝕃 𝖲𝗒𝗇𝖡𝖭G 𝖲𝗒𝗇𝖫𝖯𝕃′ 

Stoch(2) Stoch(2)

[[ − ]]ℙ

ℱ ι

(1)
(2)

(3)

[[ − ]]𝔹 [[ − ]]ℙ′ 



From BN to PLP

▸ Start from , define  as . 

▸  is  plus (routine) interpretation of multiplication and unit. 

▸

𝖲𝗒𝗇𝖡𝖭G = 𝖿𝗋𝖾𝖾𝖢𝖣(VG, ΣG) 𝖲𝗒𝗇𝖯𝖫𝖯𝕃 𝖿𝗋𝖾𝖾𝖢𝖣𝖬𝖴(VG, ΣG)

[[ − ]]ℙ [[ − ]]𝔹
𝖲𝗒𝗇𝖡𝖭G 𝖲𝗒𝗇𝖫𝖯𝕃′ 

Stoch(2) Stoch(2)

ι

(2)[[ − ]]𝔹 [[ − ]]ℙ′ 

0:: 𝖶𝖾𝗍𝖦𝗋𝖺𝗌𝗌 ← ¬𝖲𝗉𝗋𝗂𝗇𝗄𝗅𝖾𝗋, ¬𝖱𝖺𝗂𝗇 .
0.8:: 𝖶𝖾𝗍𝖦𝗋𝖺𝗌𝗌 ← ¬𝖲𝗉𝗋𝗂𝗇𝗄𝗅𝖾𝗋, 𝖱𝖺𝗂𝗇 .
0.9:: 𝖶𝖾𝗍𝖦𝗋𝖺𝗌𝗌 ← 𝖲𝗉𝗋𝗂𝗇𝗄𝗅𝖾𝗋, ¬𝖱𝖺𝗂𝗇 .

0.98:: 𝖶𝖾𝗍𝖦𝗋𝖺𝗌𝗌 ← 𝖲𝗉𝗋𝗂𝗇𝗄𝗅𝖾𝗋, 𝖱𝖺𝗂𝗇 .



From PLP to BN



From PLP to BN

▸ Observation. The PLP-to-BN transformation is syntactical. 

▸ In words, to obtain the corresponding BN model (functor) of a PLP model 
(functor), it suffices to define a suitable functor between the two syntax 
categories.



Step 1

▸ We define a BN-syntax category from the PLP-syntax category, by combining 
all generating boxes in the latter with the same codomain into a single 
generating box in the former. 

▸ Example. 

∈ Σ𝕃 ∈ Σ𝔾



Step 2

▸ We inductively define a functor  between the two syntax categories. 

▸ Example.  

▸ In general,  is mapped to :

ℱ

pa(A) → A comp(A)

comp(A)

ℱ



Step 3

▸ We obtain the BN model by composition:  

▸ Example. 

▸ For instance, 

[[ − ]]𝔹 = [[ − ]]ℙ ∘ ℱ

(0𝚂𝚙𝚛𝚒𝚗𝚔𝚕𝚎𝚛,1𝚁𝚊𝚒𝚗) ↦ 0.8 |1𝚆𝚎𝚝𝙶𝚛𝚊𝚜𝚜⟩ + 0.2 |0𝚆𝚎𝚝𝙶𝚛𝚊𝚜𝚜⟩

𝖲𝗒𝗇𝖫𝖯𝕃 𝖲𝗒𝗇𝖡𝖭G

Stoch(2)

[[ − ]]𝔹
(1)

ℱ

[[ − ]]ℙ



Classical, weighted LP



Idea

▸ Syntax categories: remains the same. 

▸ Semantics categories: 

▸ Classical LP:  

▸ Probabilistic LP:  

▸ Weighted LP:  

▸ Interestingly,  and  are both variants of , but in different flavour: 
 is some 'Kleisli category’ (morphisms are different),  changes the 

‘base’ (objects are different).

Set(2)

Kl(𝒟)(2)

Set(𝒦)

Kl(𝒟)(2) Set(𝒦) Set(2)
Kl(𝒟)(2) Set(𝒦)



Fixed-point style semantics

▸ We enrich the syntax categories to include ‘feedback wires’. 

▸ Consequently the semantics categories move from functions to relations. 

▸ Example.

immediate consequence operator supported modelsTℙ



Future work

▸ General case: variables may occur. 

▸ Other logic-programming formalisms, e.g. CP-logic, LPAD.  

▸ Diagrammatically represent PLP inference tasks, e.g. maximum a posteriori 
(MAP), most likely explanation (MEP), probabilistic inductive logic 
programming (PILP).



Thank you!
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