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This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with with generalised trees

Infinitely branching, infinite depth
No finite string representation

Impossible to get a simple syntax working well in every case
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Equations

Equations are relations under which one can take a quotient
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Coequations

Dually, coequations are corelations defining a subobject

S // // CT Col
c1 //
c2
// CoRel

W
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Example: deterministic binary trees TX = X × X ,Col = {b,w},CoRel =
2, c1(t) = 1 if Left(t) = b, c2(t) = 1 if Right(t) = b

S // // CT {b,w}
c1 //
c2
// 2

W
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No particular syntax, any way of describing a subcoalgebra/subset will do.
Special syntax for pattern avoidance (Gumm, Adamek and friends): 4t
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Examples

1 For TX = X × X + 1

4

defines the covariety of binary trees which do not have two halting
successors.

2 A T -coalgebra (V ,γ) is locally finite if for every v ∈ V there exists a
finite subcoalgebra S of (V ,γ) such that v ∈ S. The class of locally
finite T -coalgebra is a covariety. By a theorems from Rutten and
Adamek there must exist a coequation in ω-colours describing it.

3 The filter functor is not a covarietor. A generalized notion of
coequation must be used. The class of topological spaces and open
maps is a covariety in the class of coalgebras for the filter functor.
Kurz and Rosicky present this covariety by a generalized coequation.
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Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X )
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))
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Coequations-as-equation are coequations-as-corelation

Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of equations also guarantee that currying is possible

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

CT 1 ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up
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Coequations-as-modal-formula are
coequations-as-predicate

Specific syntax for coequation-as-predicate

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

A coalgebraic modal formulas for T -systems can be canonically
interpreted in this coalgebra

Picks the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), uncountably
many colours

Coalgebraic Goldblatt-Thomason theorem
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Which coequation is right for you?

Is the behaviour you’re trying to define local?

Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?
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Conclusion

Thank you.
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