
How to write a coequation

Fredrik Dahlqvist and Todd Schmidt

University College London

Salzburg via London, 3 September 2021

How to write a coequation

Fredrik Dahlqvist and Todd Schmidt

University College London

Salzburg via London, 3 September 2021

Introduction

Starting point

Coequations have been around for at least 25 years

Tons of theoretical results

... but coequations haven’t really been adopted as a practical
formalism by computer scientists

Why?

Introduction

Starting point

Coequations have been around for at least 25 years

Tons of theoretical results

... but coequations haven’t really been adopted as a practical
formalism by computer scientists

Why?

Introduction

Starting point

Coequations have been around for at least 25 years

Tons of theoretical results

... but coequations haven’t really been adopted as a practical
formalism by computer scientists

Why?

Introduction

Starting point

Coequations have been around for at least 25 years

Tons of theoretical results

... but coequations haven’t really been adopted as a practical
formalism by computer scientists

Why?

Introduction

Starting point

Coequations have been around for at least 25 years

Tons of theoretical results

... but coequations haven’t really been adopted as a practical
formalism by computer scientists

Why?

Introduction

Central premise

No universally accepted syntax to write a coequation

Difficult for the end-user to understand what a coequation is

Which formalism should be used in practice?

Introduction

Central premise

No universally accepted syntax to write a coequation

Difficult for the end-user to understand what a coequation is

Which formalism should be used in practice?

Introduction

Central premise

No universally accepted syntax to write a coequation

Difficult for the end-user to understand what a coequation is

Which formalism should be used in practice?

Introduction

Central premise

No universally accepted syntax to write a coequation

Difficult for the end-user to understand what a coequation is

Which formalism should be used in practice?

Introduction

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with with generalised trees

Infinitely branching, infinite depth
No finite string representation

Impossible to get a simple syntax working well in every case

Introduction

Root cause

This problem is inevitable

Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with with generalised trees

Infinitely branching, infinite depth
No finite string representation

Impossible to get a simple syntax working well in every case

Introduction

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with with generalised trees

Infinitely branching, infinite depth
No finite string representation

Impossible to get a simple syntax working well in every case

Introduction

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees

Using brackets there is an unambiguous finite string representation

Coequations typically deal with with generalised trees

Infinitely branching, infinite depth
No finite string representation

Impossible to get a simple syntax working well in every case

Introduction

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with with generalised trees

Infinitely branching, infinite depth
No finite string representation

Impossible to get a simple syntax working well in every case

Introduction

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with with generalised trees

Infinitely branching, infinite depth
No finite string representation

Impossible to get a simple syntax working well in every case

Introduction

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with with generalised trees
Infinitely branching, infinite depth

No finite string representation

Impossible to get a simple syntax working well in every case

Introduction

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with with generalised trees
Infinitely branching, infinite depth
No finite string representation

Impossible to get a simple syntax working well in every case

Introduction

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with with generalised trees
Infinitely branching, infinite depth
No finite string representation

Impossible to get a simple syntax working well in every case

Introduction

Outline of the paper

History of the notion of coequation
From this extract 4 kinds of syntax

Coequation-as-corelation
Coequation-as-predicate
Coequation-as-equation
Coequation-as-modal-formula

Introduction

Outline of the paper

History of the notion of coequation

From this extract 4 kinds of syntax

Coequation-as-corelation
Coequation-as-predicate
Coequation-as-equation
Coequation-as-modal-formula

Introduction

Outline of the paper

History of the notion of coequation
From this extract 4 kinds of syntax

Coequation-as-corelation
Coequation-as-predicate
Coequation-as-equation
Coequation-as-modal-formula

Introduction

Outline of the paper

History of the notion of coequation
From this extract 4 kinds of syntax

Coequation-as-corelation
Coequation-as-predicate
Coequation-as-equation
Coequation-as-modal-formula

Coequation-as-corelation

Coequation-as-corelation

Coequation-as-corelation

Equations

Equations are relations under which one can take a quotient

Rel
e1 //
e2
// FT Var // //

v
��

Q

||
A

Example: semigroups
TX = X × X ,Var = {x , y , z},Rel = 1, e1(∗) = (xy)z, e2(∗) = x(yz)

1
e1 //
e2
// FT {x , y , z} // //

v
��

Q

zz
A

Coequation-as-corelation

Equations
Equations are relations under which one can take a quotient

Rel
e1 //
e2
// FT Var // //

v
��

Q

||
A

Example: semigroups
TX = X × X ,Var = {x , y , z},Rel = 1, e1(∗) = (xy)z, e2(∗) = x(yz)

1
e1 //
e2
// FT {x , y , z} // //

v
��

Q

zz
A

Coequation-as-corelation

Equations
Equations are relations under which one can take a quotient

Rel
e1 //
e2
// FT Var // //

v
��

Q

||
A

Example: semigroups
TX = X × X ,Var = {x , y , z},Rel = 1, e1(∗) = (xy)z, e2(∗) = x(yz)

1
e1 //
e2
// FT {x , y , z} // //

v
��

Q

zz
A

Coequation-as-corelation

Coequations

Dually, coequations are corelations defining a subobject

S // // CT Col
c1 //
c2
// CoRel

W

c

OOcc

Example: deterministic binary trees TX = X × X ,Col = {b,w},CoRel =
2, c1(t) = 1 if Left(t) = b, c2(t) = 1 if Right(t) = b

S // // CT {b,w}
c1 //
c2
// 2

W

c

OOdd

Coequation-as-corelation

Coequations
Dually, coequations are corelations defining a subobject

S // // CT Col
c1 //
c2
// CoRel

W

c

OOcc

Example: deterministic binary trees TX = X × X ,Col = {b,w},CoRel =
2, c1(t) = 1 if Left(t) = b, c2(t) = 1 if Right(t) = b

S // // CT {b,w}
c1 //
c2
// 2

W

c

OOdd

Coequation-as-corelation

Coequations
Dually, coequations are corelations defining a subobject

S // // CT Col
c1 //
c2
// CoRel

W

c

OOcc

Example: deterministic binary trees TX = X × X ,Col = {b,w},CoRel =
2, c1(t) = 1 if Left(t) = b, c2(t) = 1 if Right(t) = b

S // // CT {b,w}
c1 //
c2
// 2

W

c

OOdd

Coequation-as-predicate

Coequation-as-predicate

Coequation-as-predicate

Coequation-as-predicate

Two flavours: for a covarietor T , a coequation-as-predicate can be

A subcoalgebra Coeq � CT Col

A subset Coeq � UT CT Col

No particular syntax, any way of describing a subcoalgebra/subset will do.
Special syntax for pattern avoidance (Gumm, Adamek and friends): 4t

Coequation-as-predicate

Coequation-as-predicate

Two flavours: for a covarietor T , a coequation-as-predicate can be

A subcoalgebra Coeq � CT Col

A subset Coeq � UT CT Col

No particular syntax, any way of describing a subcoalgebra/subset will do.

Special syntax for pattern avoidance (Gumm, Adamek and friends): 4t

Coequation-as-predicate

Coequation-as-predicate

Two flavours: for a covarietor T , a coequation-as-predicate can be

A subcoalgebra Coeq � CT Col

A subset Coeq � UT CT Col

No particular syntax, any way of describing a subcoalgebra/subset will do.

Special syntax for pattern avoidance (Gumm, Adamek and friends): 4t

Coequation-as-predicate

Coequation-as-predicate

Two flavours: for a covarietor T , a coequation-as-predicate can be

A subcoalgebra Coeq � CT Col

A subset Coeq � UT CT Col

No particular syntax, any way of describing a subcoalgebra/subset will do.
Special syntax for pattern avoidance (Gumm, Adamek and friends): 4t

Coequation-as-predicate

Examples

1 For TX = X × X + 1

4

defines the covariety of binary trees which do not have two halting
successors.

2 A T -coalgebra (V ,γ) is locally finite if for every v ∈ V there exists a
finite subcoalgebra S of (V ,γ) such that v ∈ S. The class of locally
finite T -coalgebra is a covariety. By a theorems from Rutten and
Adamek there must exist a coequation in ω-colours describing it.

3 The filter functor is not a covarietor. A generalized notion of
coequation must be used. The class of topological spaces and open
maps is a covariety in the class of coalgebras for the filter functor.
Kurz and Rosicky present this covariety by a generalized coequation.

Coequation-as-predicate

Examples

1 For TX = X × X + 1

4

defines the covariety of binary trees which do not have two halting
successors.

2 A T -coalgebra (V ,γ) is locally finite if for every v ∈ V there exists a
finite subcoalgebra S of (V ,γ) such that v ∈ S. The class of locally
finite T -coalgebra is a covariety. By a theorems from Rutten and
Adamek there must exist a coequation in ω-colours describing it.

3 The filter functor is not a covarietor. A generalized notion of
coequation must be used. The class of topological spaces and open
maps is a covariety in the class of coalgebras for the filter functor.
Kurz and Rosicky present this covariety by a generalized coequation.

Coequation-as-predicate

Examples

1 For TX = X × X + 1

4

defines the covariety of binary trees which do not have two halting
successors.

2 A T -coalgebra (V ,γ) is locally finite if for every v ∈ V there exists a
finite subcoalgebra S of (V ,γ) such that v ∈ S. The class of locally
finite T -coalgebra is a covariety. By a theorems from Rutten and
Adamek there must exist a coequation in ω-colours describing it.

3 The filter functor is not a covarietor. A generalized notion of
coequation must be used. The class of topological spaces and open
maps is a covariety in the class of coalgebras for the filter functor.
Kurz and Rosicky present this covariety by a generalized coequation.

Coequation-as-equation

Coequation-as-equation

Coequation-as-equation

Coequation-as-equation

Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X)
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))

Coequation-as-equation

Coequation-as-equation

Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X)
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))

Coequation-as-equation

Coequation-as-equation

Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X)
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))

Coequation-as-equation

Coequation-as-equation

Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X)
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))

Coequation-as-equation

Coequation-as-equation

Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X)
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))

Coequation-as-equation

Coequations-as-equation are coequations-as-corelation

Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of equations also guarantee that currying is possible

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

CT 1 ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up

Coequation-as-equation

Coequations-as-equation are coequations-as-corelation
Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of equations also guarantee that currying is possible

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

CT 1 ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up

Coequation-as-equation

Coequations-as-equation are coequations-as-corelation
Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of equations also guarantee that currying is possible

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

CT 1 ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up

Coequation-as-equation

Coequations-as-equation are coequations-as-corelation
Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of equations also guarantee that currying is possible

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

CT 1 ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up

Coequation-as-equation

Coequations-as-equation are coequations-as-corelation
Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of equations also guarantee that currying is possible

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

CT 1 ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up

Coequation-as-modal formulas

Coequation-as-modal-formula

Coequation-as-modal formulas

Coequations-as-modal-formula are
coequations-as-predicate

Specific syntax for coequation-as-predicate

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

A coalgebraic modal formulas for T -systems can be canonically
interpreted in this coalgebra

Picks the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), uncountably
many colours

Coalgebraic Goldblatt-Thomason theorem

Coequation-as-modal formulas

Coequations-as-modal-formula are
coequations-as-predicate

Specific syntax for coequation-as-predicate

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

A coalgebraic modal formulas for T -systems can be canonically
interpreted in this coalgebra

Picks the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), uncountably
many colours

Coalgebraic Goldblatt-Thomason theorem

Coequation-as-modal formulas

Coequations-as-modal-formula are
coequations-as-predicate

Specific syntax for coequation-as-predicate

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

A coalgebraic modal formulas for T -systems can be canonically
interpreted in this coalgebra

Picks the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), uncountably
many colours

Coalgebraic Goldblatt-Thomason theorem

Coequation-as-modal formulas

Coequations-as-modal-formula are
coequations-as-predicate

Specific syntax for coequation-as-predicate

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

A coalgebraic modal formulas for T -systems can be canonically
interpreted in this coalgebra

Picks the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), uncountably
many colours

Coalgebraic Goldblatt-Thomason theorem

Coequation-as-modal formulas

Coequations-as-modal-formula are
coequations-as-predicate

Specific syntax for coequation-as-predicate

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

A coalgebraic modal formulas for T -systems can be canonically
interpreted in this coalgebra

Picks the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), uncountably
many colours

Coalgebraic Goldblatt-Thomason theorem

Coequation-as-modal formulas

Coequations-as-modal-formula are
coequations-as-predicate

Specific syntax for coequation-as-predicate

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

A coalgebraic modal formulas for T -systems can be canonically
interpreted in this coalgebra

Picks the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), uncountably
many colours

Coalgebraic Goldblatt-Thomason theorem

Coequation-as-modal formulas

Coequations-as-modal-formula are
coequations-as-predicate

Specific syntax for coequation-as-predicate

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

A coalgebraic modal formulas for T -systems can be canonically
interpreted in this coalgebra

Picks the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), uncountably
many colours

Coalgebraic Goldblatt-Thomason theorem

Conclusion

Which coequation is right for you?

Is the behaviour you’re trying to define local?

Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Conclusion

Which coequation is right for you?

Is the behaviour you’re trying to define local?

Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Conclusion

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Conclusion

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format

Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Conclusion

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula

Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Conclusion

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Conclusion

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Conclusion

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}

Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Conclusion

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation

Not sure: Reason directly in terms of covariety?

Conclusion

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Conclusion

Thank you.

	Introduction
	Coequation-as-corelation
	Coequation-as-predicate
	Coequation-as-equation
	Coequation-as-modal formulas
	Conclusion

