
The Semantics of Weak Persistency

Viktor Vafeiadis

CALCO, 3 September 2021

ERC-COG-2020 grant PERSIST, Mar’21–Feb’26

Traditional computer storage

I fast byte-size access
I volatile storage

I slow block-size access
I durable storage

2

Non-volatile memory (NVM)

Fast byte-size access
I 3-10x slower than RAM
I 100x faster that HDD

Durable storage
I Larger than RAM
I More energy-efficient than RAM

3

Verification is paramount!

An error occurred:
corrupted data

Verification is paramount!

An error occurred:
corrupted data

Hello, IT?
My machine’s crashed!

Verification is paramount!

An error occurred:
corrupted data

Have you tried
turning it off and on again?

Verification is paramount!

An error occurred:
corrupted data

Nothing changed!

Roadmap

I What semantics do programs have?
(operational, declarative/axiomatic)

I How can we avoid weak behaviours?
(flushes, fences)

I When is a persistent algorithm correct?
(invariants, persistent serializability/linearizability)

I What techniques can we use to establish correctness?
(program logics, model checking)

4

Weak persistency semantics

40s

70s

90s

now

Sequential programs

Interleaving concurrency (SC)

Weak memory concurrency (WMC)

WMC & Weak memory persistency

6

40s

70s

90s

now

Sequential programs

Interleaving concurrency (SC)

Weak memory concurrency (WMC)

WMC & Weak memory persistency

6

40s

70s

90s

now

Sequential programs

Interleaving concurrency (SC)

Weak memory concurrency (WMC)

WMC & Weak memory persistency

6

Weak memory consistency

The x86-TSO model

CPU
write

write-back

read

CPU

. . .

. . .

Memory

Store buffering (SB)
Initially, x = y = 0.

x := 1;
a := y //0

y := 1;
b := x //0

program order (po), reads-from (rf), modification order (mo)

7

40s

70s

90s

now

Sequential programs

Interleaving concurrency (SC)

Weak memory concurrency (WMC)

WMC & Weak memory persistency

8

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

Weak persistency

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

Weak persistency

!! Execution continues ahead of persistence
 — asynchronous persists

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

Weak persistency

!! Execution continues ahead of persistence
 — asynchronous persists

!! Writes may persist out of order
 — relaxed persists

x := 1;

// recovery routine

// x=y=0

y := 1;

// x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1

Weak persistency

!! Execution continues ahead of persistence
 — asynchronous persists

!! Writes may persist out of order
 — relaxed persists

Consistency Model
the order in which writes

are made visible to other threads

Persistency Model
the order in which writes

are persisted to NVM

NVM Semantics
Consistency + Persistency Model

Basic persistency model

x:=1 : add x:=1 to p-buffer

a:=x : if p-buffer contains x, read latest entry
else read from memory

p-buffer lost; memory retained
Persistence Buffer

CPU

(Persistent) Memory

w
rit

e
w

rit
e

re
ad

re
ad

Unbuffered at non-deterministic points in time

Buffering & unbuffering orders may disagree

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

!! out of order persists

Relaxed persists

x := 1;

// recovery routine

// x=0;y=0

y := 1;

Explicit persists?

☛ explicit persists?

persist x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

!! out of order persists

x86: clwb, clflushopt, clflush

✤ clwb and clflushopt: same ordering constraints

Strength
(ordering constraints)

clwb

clflushopt

clflush

Performance

clflush

clflushopt

clwb

✤ clwb does not invalidate cache line

✤ clflush: strongest ordering constraints; invalidates cache line

✤ clflushopt invalidates cache line

x := 1;

// recovery routine

// x=0;y=0

y := 1;

Strong persists: clflush

clflush x;☛

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Weak persists: clflushopt & clwb

clflushopt x / clwb x; ☛

x := 1;

// recovery routine

// x=0;y=0

y := 1;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Weak persists: clflushopt & clwb

clflushopt x / clwb x; ☛
weak explicit persists of x86

are

asynchronous

and can themselves

persist out of order !

x := 1;

// recovery routine

// x=0;y=0

y := 1;

clflushopt x/clwb x;
sfence/mfence/RMW;

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1

Solution: Persist sequences

✤ Waits until earlier writes on x are persisted
✤ Disallows reordering

✓ synchronous persists
✓ no out of order persists

Adding weak memory consistency

(Persistent) Memory

CPU

Persistence Buffer

Sequential, Persistent x86

(Volatile) Memory

Thread1

Buffer

Thread2

Buffer

Concurrent, Volatile x86

+

Persistent x86 (Px86)

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: consistency model

Persistent x86 (Px86)

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model

buffer/unbuffer order: consistency model

Persistent x86 (Px86)

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

buffer/unbuffer order: persistency model

buffer/unbuffer order: consistency model NVM
Semantics

(Px86)

Persistent x86 (Px86)

(Persistent) Memory

Thread1

Buffer

Persistence Buffer

Thread2

Buffer

Two equivalent formal models

Operational

CPU
write

write-back

read

CPU

. . .

. . .

persistency buffer

memory
persist

and

Declarative/Axiomatic

[init]

Wx1

Ry

Wy1

Rx
rf

mo mo

9

Roadmap

3 What semantics do programs have?
(operational, declarative/axiomatic)

3 How can we avoid weak behaviours?
(flushes, fences)

I When is a persistent algorithm correct?
(invariants, persistent serializability/linearizability)

I What techniques can we use to establish correctness?
(program logics, model checking)

10

Persistent serializability (PSER)

Serialisability (SER)
All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →

Persistent Serialisability (PSER)
All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →

A prefix of transactions appears to persist in the same sequential order

Persistent Serialisability (PSER)
All transactions appear to execute in a sequential order

[T1 : x := 1;
a := y; [T2 : y := 1;

b := x;

T1 T2→ T1T2 →

A prefix of transactions appears to persist in the same sequential order

// x = y = 0T1 T2⇢⇢
// x = 1 y = 0T1 T2⇢→

T1 → T2 → // x = y = 1

Persistent Serialisability (PSER)
All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order

T1 → → …→T3 T5 T7T2 T4 T6→ → → →

all persist none persist

Persistent Serialisability (PSER)
All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order

 in each era

→ → …→ → → → →

execution

recovery

execution

recovery

execution

no crashes

Persistent Serialisability (PSER)
All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order

 in each era

→ → …→ → → → →

execution

recovery

execution

recovery

execution

no crashes
PSER

Strong guarantees
Intuitive semantics

Persistent Serialisability (PSER)
All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order

 in each era

→ → …→ → → → →

execution

recovery

execution

recovery

execution

no crashes
PSER

Strong guarantees
Intuitive semantics

PSER Evaluation

1. Is PSER feasible?

2. Is PSER useful?

✢ add code for persistence

Is PSER Feasible?

✓ PSER implementation in x86, ARM

✢ add code to log metadata for recovery

✢ add recovery mechanism

⇒
recovery mechanism

check log for incomplete transactions:

 either complete
 or rollback

Take SER Implementation — e.g. 2-PL

Is PSER Useful?

1. Take any correct sequential implementation of L
Given library L (e.g. queue library):

⇒ correct, concurrent & persistent implementation of L

enq(q,v)=
 pser{
 < enq_body > }

deq(q)=
 pser{
 < deq_body > }

enq(q,v)=
 < enq_body >

deq(q)=
 < deq_body >

sequential queue imp.
correct

concurrent & persistent
queue imp.

2. wrap each operation in a PSER transaction

Roadmap

3 What semantics do programs have?
(operational, declarative/axiomatic)

3 How can we avoid weak behaviours?
(flushes, fences)

3 When is a persistent algorithm correct?
(invariants, persistent serializability/linearizability)

I What techniques can we use to establish correctness?
(program logics, model checking)

12

Program logics for persistency

POG: Persistent Owicki-Gries reasoning
Instrument program with additional variables:
I volatile xv – the latest observable value of x
I persisted xp – the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{xv = 0 ∧ xp = 0 ∧ yv = 0 ∧ yp = 0}

x := 1

{xv = 1 ∧ xp ∈ {0, 1} ∧ yv = 0 ∧ yp = 0}

clflush x

{xv = 1 ∧ xp = 1 ∧ yv = 0 ∧ yp = 0}

y := 1

{xv = 1 ∧ xp = 1 ∧ yv = 1 ∧ yp ∈ {0, 1}}

Parallel context:
xp := xv

yp := yv

See OOPSLA’20; the presentation here is somewhat simplified 14

POG: Persistent Owicki-Gries reasoning
Instrument program with additional variables:
I volatile xv – the latest observable value of x
I persisted xp – the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{xv = 0 ∧ xp = 0 ∧ yv = 0 ∧ yp = 0}

x := 1

{xv = 1 ∧ xp ∈ {0, 1} ∧ yv = 0 ∧ yp = 0}

clflush x

{xv = 1 ∧ xp = 1 ∧ yv = 0 ∧ yp = 0}

y := 1

{xv = 1 ∧ xp = 1 ∧ yv = 1 ∧ yp ∈ {0, 1}}

Parallel context:
xp := xv

yp := yv

See OOPSLA’20; the presentation here is somewhat simplified 14

POG: Persistent Owicki-Gries reasoning
Instrument program with additional variables:
I volatile xv – the latest observable value of x
I persisted xp – the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{xv = 0 ∧ xp = 0 ∧ yv = 0 ∧ yp = 0}

x v := 1

{xv = 1 ∧ xp ∈ {0, 1} ∧ yv = 0 ∧ yp = 0}

xp := xv

{xv = 1 ∧ xp = 1 ∧ yv = 0 ∧ yp = 0}

y v := 1

{xv = 1 ∧ xp = 1 ∧ yv = 1 ∧ yp ∈ {0, 1}}

Parallel context:
xp := xv

yp := yv

See OOPSLA’20; the presentation here is somewhat simplified 14

POG: Persistent Owicki-Gries reasoning
Instrument program with additional variables:
I volatile xv – the latest observable value of x
I persisted xp – the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{xv = 0 ∧ xp = 0 ∧ yv = 0 ∧ yp = 0}
x v := 1

{xv = 1 ∧ xp ∈ {0, 1} ∧ yv = 0 ∧ yp = 0}

xp := xv

{xv = 1 ∧ xp = 1 ∧ yv = 0 ∧ yp = 0}

y v := 1

{xv = 1 ∧ xp = 1 ∧ yv = 1 ∧ yp ∈ {0, 1}}

Parallel context:
xp := xv

yp := yv

See OOPSLA’20; the presentation here is somewhat simplified 14

POG: Persistent Owicki-Gries reasoning
Instrument program with additional variables:
I volatile xv – the latest observable value of x
I persisted xp – the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{xv = 0 ∧ xp = 0 ∧ yv = 0 ∧ yp = 0}
x v := 1
{xv = 1 ∧ xp ∈ {0, 1} ∧ yv = 0 ∧ yp = 0}
xp := xv

{xv = 1 ∧ xp = 1 ∧ yv = 0 ∧ yp = 0}

y v := 1

{xv = 1 ∧ xp = 1 ∧ yv = 1 ∧ yp ∈ {0, 1}}

Parallel context:
xp := xv

yp := yv

See OOPSLA’20; the presentation here is somewhat simplified 14

POG: Persistent Owicki-Gries reasoning
Instrument program with additional variables:
I volatile xv – the latest observable value of x
I persisted xp – the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{xv = 0 ∧ xp = 0 ∧ yv = 0 ∧ yp = 0}
x v := 1
{xv = 1 ∧ xp ∈ {0, 1} ∧ yv = 0 ∧ yp = 0}
xp := xv

{xv = 1 ∧ xp = 1 ∧ yv = 0 ∧ yp = 0}
y v := 1

{xv = 1 ∧ xp = 1 ∧ yv = 1 ∧ yp ∈ {0, 1}}

Parallel context:
xp := xv

yp := yv

See OOPSLA’20; the presentation here is somewhat simplified 14

POG: Persistent Owicki-Gries reasoning
Instrument program with additional variables:
I volatile xv – the latest observable value of x
I persisted xp – the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{xv = 0 ∧ xp = 0 ∧ yv = 0 ∧ yp = 0}
x v := 1
{xv = 1 ∧ xp ∈ {0, 1} ∧ yv = 0 ∧ yp = 0}
xp := xv

{xv = 1 ∧ xp = 1 ∧ yv = 0 ∧ yp = 0}
y v := 1
{xv = 1 ∧ xp = 1 ∧ yv = 1 ∧ yp ∈ {0, 1}}

Parallel context:
xp := xv

yp := yv

See OOPSLA’20; the presentation here is somewhat simplified 14

Model checking for persistency

Software model checking
Given a program P and a property Φ:
Check that all executions of P satisfy Φ.

I P - shared-memory concurrency + flushes/fences
I Φ - safety assertion, invariant over persisted state
I ‘Stateless’ enumeration of all reachable program states

Which kind of model to use?
Operational

CPU
write

write-back

read

CPU

. . .

. . .

persistency buffer

memory
persist

or

Declarative
[init]

Wx1 Wy1 Wz1

Rx1 Ry1 Rz1

mo

rf

3 Easy to build an interpreter
7 Tied to a specific model
7 Many redundant executions

7 Not immediately executable
3 Largely model-agnostic
3 Almost no redundancy

16

Which kind of model to use?
Operational

CPU
write

write-back

read

CPU

. . .

. . .

persistency buffer

memory
persist

or

Declarative
[init]

Wx1 Wy1 Wz1

Rx1 Ry1 Rz1

mo

rf

3 Easy to build an interpreter
7 Tied to a specific model
7 Many redundant executions

7 Not immediately executable
3 Largely model-agnostic
3 Almost no redundancy

16

Which kind of model to use?
Operational

CPU
write

write-back

read

CPU

. . .

. . .

persistency buffer

memory
persist

or

Declarative
[init]

Wx1 Wy1 Wz1

Rx1 Ry1 Rz1

mo

rf

3 Easy to build an interpreter
7 Tied to a specific model
7 Many redundant executions

7 Not immediately executable
3 Largely model-agnostic
3 Almost no redundancy

Initially, x = y = z = 0
x := 1
a := x

y := 1
b := y

z := 1
c := z

Has 6!/23 = 90 interleavings
but only one execution graph

16

Using declarative models pays off!
RMEM benchmarks

RMEM GenMC
DQ/211-2-1 172.34 0.17
DQ-opt/211-2-1 770.45 0.17
STC/210-011-000 1100.35 0.06
STC-opt/210-011-000 1154.68 0.10
QU/100-100-010 1099.20 0.06
QU-opt/100-100-010 * 0.06

Verification times in seconds

I RMEM — operational ARM model with a few optimisations
I GenMC — declarative memory model

17

Basic model checking algorithm
Construct all consistent execution graphs incrementally
I Fix insertion order (e.g. increasing thread ID order)

When adding a read r :
I Consider all possible writes that r could read from.

When adding a write w :
I Revisit existing reads to instead read from w .

See POPL’18 and PLDI’19 papers for more details 18

Basic model checking algorithm
Construct all consistent execution graphs incrementally
I Fix insertion order (e.g. increasing thread ID order)

When adding a read r :
I Consider all possible writes that r could read from.

When adding a write w :
I Revisit existing reads to instead read from w .

x := 1 a := x

Wx0

See POPL’18 and PLDI’19 papers for more details 18

Basic model checking algorithm
Construct all consistent execution graphs incrementally
I Fix insertion order (e.g. increasing thread ID order)

When adding a read r :
I Consider all possible writes that r could read from.

When adding a write w :
I Revisit existing reads to instead read from w .

x := 1 a := x

Wx0

Wx0

Wx1
po

See POPL’18 and PLDI’19 papers for more details 18

Basic model checking algorithm
Construct all consistent execution graphs incrementally
I Fix insertion order (e.g. increasing thread ID order)

When adding a read r :
I Consider all possible writes that r could read from.

When adding a write w :
I Revisit existing reads to instead read from w .

x := 1 a := x

Wx0

Wx0

Wx1
po

See POPL’18 and PLDI’19 papers for more details 18

Basic model checking algorithm
Construct all consistent execution graphs incrementally
I Fix insertion order (e.g. increasing thread ID order)

When adding a read r :
I Consider all possible writes that r could read from.

When adding a write w :
I Revisit existing reads to instead read from w .

x := 1 a := x

Wx0

Wx0

Wx1
po

1 Wx0

Wx1 Rx

rf
2 Wx0

Wx1 Rxrf

See POPL’18 and PLDI’19 papers for more details 18

Basic model checking algorithm
Construct all consistent execution graphs incrementally
I Fix insertion order (e.g. increasing thread ID order)

When adding a read r :
I Consider all possible writes that r could read from.

When adding a write w :
I Revisit existing reads to instead read from w .

x := 1 a := x Add a := x first

Wx0

Wx0

Rx

rf

See POPL’18 and PLDI’19 papers for more details 18

Basic model checking algorithm
Construct all consistent execution graphs incrementally
I Fix insertion order (e.g. increasing thread ID order)

When adding a read r :
I Consider all possible writes that r could read from.

When adding a write w :
I Revisit existing reads to instead read from w .

x := 1 a := x Add a := x first

Wx0

Wx0

Rx

rf

See POPL’18 and PLDI’19 papers for more details 18

Basic model checking algorithm
Construct all consistent execution graphs incrementally
I Fix insertion order (e.g. increasing thread ID order)

When adding a read r :
I Consider all possible writes that r could read from.

When adding a write w :
I Revisit existing reads to instead read from w .

x := 1 a := x Add a := x first

Wx0

Wx0

Rx

rf

1 Wx0

Wx1 Rx

rf
2 Wx0

Wx1 Rxrf

See POPL’18 and PLDI’19 papers for more details 18

Checking persistency assertions

x := 1 y := 2 z := 3

Check that y 6= 1 after a crash

Simple approach
I Enumerate all post-crash states of a program
I Check that each persisted state satisfies the assertion

Total p-ordering
I In which order did the durable

events persist?
I Take any prefix of that order
I In total, 4× 3! = 24 cases

Partial p-ordering
I Which durable events have

persisted?
I Their relative ordering is irrelevant
I In total, 23 = 8 cases

The assertion mentions only the variable y ;
whether x := 1 and z := 3 persist is irrelevant

19

Checking persistency assertions

x := 1 y := 2 z := 3

Check that y 6= 1 after a crash
Simple approach
I Enumerate all post-crash states of a program
I Check that each persisted state satisfies the assertion

Total p-ordering
I In which order did the durable

events persist?
I Take any prefix of that order
I In total, 4× 3! = 24 cases

Partial p-ordering
I Which durable events have

persisted?
I Their relative ordering is irrelevant
I In total, 23 = 8 cases

The assertion mentions only the variable y ;
whether x := 1 and z := 3 persist is irrelevant

19

Checking persistency assertions

x := 1 y := 2 z := 3

Check that y 6= 1 after a crash
Simple approach
I Enumerate all post-crash states of a program
I Check that each persisted state satisfies the assertion

Total p-ordering
I In which order did the durable

events persist?
I Take any prefix of that order
I In total, 4× 3! = 24 cases

Partial p-ordering
I Which durable events have

persisted?
I Their relative ordering is irrelevant
I In total, 23 = 8 cases

The assertion mentions only the variable y ;
whether x := 1 and z := 3 persist is irrelevant

19

Checking persistency assertions

x := 1 y := 2 z := 3

Check that y 6= 1 after a crash
Simple approach
I Enumerate all post-crash states of a program
I Check that each persisted state satisfies the assertion

Total p-ordering
I In which order did the durable

events persist?
I Take any prefix of that order
I In total, 4× 3! = 24 cases

Partial p-ordering
I Which durable events have

persisted?
I Their relative ordering is irrelevant
I In total, 23 = 8 cases

The assertion mentions only the variable y ;
whether x := 1 and z := 3 persist is irrelevant

19

Recovery observer
Treat the persistency assertions as an additional thread

x := 1 y := 2 z := 3 E a := y
assert(a 6= 1)

. . . with somewhat different consistency axioms
I Enforce snapshot atomicity

(all recovery reads of y read from the same write)
I Observing a durable event ⇒ observe all events persisted before it

In our example, there are only 2 execution graphs

See POPL’21 paper on PerSeVerE for more details 20

Summary

3 What semantics do programs have?
(operational, declarative/axiomatic)

3 How can we avoid weak behaviours?
(flushes, fences)

3 When is a persistent algorithm correct?
(invariants, persistent serializability/linearizability)

3 What techniques can we use to establish correctness?
(program logics, model checking)

21

	Weak persistency semantics
	Persistent serializability (PSER)
	Program logics for persistency
	Model checking for persistency

