The Semantics of Weak Persistency

Viktor Vafeiadis

—
O MAX PLANCK INSTITUTE
- FOR SOFTWARE SYSTEMS

CALCO, 3 September 2021

ERC-COG-2020 grant PERSIST, Mar'21-Feb'26

Traditional computer storage

RAM - HOD -
RANDOM ACCESS MEMORY HARD DISK DRIVE
(MEMORY) (STORAGE)
> fast byte-size access » slow block-size access

» volatile storage » durable storage

Non-volatile

Fast byte-size access
» 3-10x slower than RAM
» 100x faster that HDD

Durable storage
» Larger than RAM
» More energy-efficient than RAM

memory (NVM)

Verification is paramount!

An error occurred:
corrupted data

<

IAX\V'\\\

I
[1 e e ey

et Lo Vot) o) e) (i

Verification is paramount!

An error occurred:
corrupted data

III \\\
A L AT 3
\

Hello, IT?
My machine’s crashed!

Verification is paramount!

An error occurred:
corrupted data

Have you tried
turning it off and on again?

Verification is paramount!

An error occurred:
corrupted data

P i) 5) () (o e AT EARRESS
II] () o (i) L) o ol
IIIIIIIIII‘IX‘\\\\\

Roadmap

» What semantics do programs have?
(operational, declarative/axiomatic)

» How can we avoid weak behaviours?
(flushes, fences)

» When is a persistent algorithm correct?
(invariants, persistent serializability/linearizability)

» What techniques can we use to establish correctness?
(program logics, model checking)

40s | Sequential programs

40s | Sequential programs

70s | Interleaving concurrency (SC)

40s | Sequential programs
70s | Interleaving concurrency (SC)

90s | Weak memory concurrency (WMC)

Weak memory consistency

The x86-TSO model

CPU CPU Store buffering (SB)

write

Initially, x =y = 0.

read x =1 y =1

a=y /0| b:=x /0

write-back

[Memory]

40s | Sequential programs
70s | Interleaving concurrency (SC)
90s | Weak memory concurrency (WMC)

now WMC & Weak memory persistency

Weak persistency

-
/] x=y=0
x := 1;
y = 1;
// recovery routine
/ x=y=1 OR x=y=0 OR x=1;y=0 OR x=0;y=1
N

J

Weak persistency

-
/] x=y=0

X = 1;

y = 1;

(

// recovery routine

// x=y=1 OR OR x=1;y=0 OR x=0;y=1

N

J

! Execution continues ahead of persistence
— asynchronous persists

Weak persistency

-
/] x=y=0

X = 1;

y = 1;

(

// recovery routine

// x=y=1 OR OR x=1;y=0 OR

N

J

!! Execution continues ahead of persistence
— asynchronous persists

! Writes may persist out of order
— relaxed persists

Consistency Model

the order in which writes
are made visible to other threads

Persistency Model

the order in which writes
are persisted to NVM

NVM Semantics

Consistency + Persistency Model

Basic persistency model

x:=1 : add x:=1 to p-buffer

a:r=x .

read

if p-buffer contains x, read latest entry

i else read from memory
;

9 p-buffer lost; memory retained
[('Persistent)

Memory j

Unbuffered at non-deterministic points in time

Buffering & unbuffering orders may disagree

Relaxed persists

r ~
// x=0;y=0
x := 1;
y = 1;

(

// recovery routine

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR(x=0;y=1

- J

persists

Explicit persists?

// x=0;y=0
X := 1;

/= persist x;
y = 1;

// recovery routine

// x=1;y=1 OR =%=0+y=0- OR x=1;y=0 OR —=05y=2%

_

persists

w explicit persists?

X86: clwb, clflushopt, clflush

clwb clflush
Strength | |
(ordering constraints) |
clflushopt
clflush clwb
Performance I I I
clflushopt

% clwb and cl1flushopt: same ordering constraints
+ clwb does not invalidate cache line
% clflushopt invalidates cache line

<+ clflush: strongest ordering constraints; invalidates cache line

Strong persists: cl1flush

/| %=0;y=0
x g= 1g

oS clflush x;
y = 1;

b

// recovery routine

// x=1;y=1 OR =%=04%=0- OR x=1;y=0 OR —x=045=%
N J

Weak persists: clflushopt & clwb

(i\
// x=0;y=0

x g= 1g
- clflushopt x/clwb x;
y = 1;

b

// recovery routine

// x=1;y=1 OR x=0;y=0 OR x=1;y=0 OR x=0;y=1
N J

weak explicit persists of x86
are
asynchronous
and can themselves
persist out of order!

Solution: Persist sequences

/] x=0;y=0

X := 1;
(clflushopt x/clwb x;
L sfence/mfence/RMW;

y = 1;

b

// recovery routine
// x=1;y=1 OR »=B+5=8 OR x=1;y=0 OR %=0=s-y=
g

)

< Waits until earlier writes on x are persisted V' synchronous persists
% Disallows reordering v no out of order persists

Adding weak memory consistency

T I
1 + .
((Persistent) Memory) ((Volatile) Memory j

Sequential, Persistent x86 Concurrent, Volatile x86

Persistent x86 (Px86)

Thread1 Thread2
L J 4 J{ A

Buffer Buffer

[Persistence Buffer]

((Persistent) Memory j

z LY

Persistent x86 (Px86)

Thread1 Thread2
4 4 A 4 +o4

[Persistence Buffer]

l

[(Persistent) Memory j

buffer/unbuffer order: consistency model

Persistent x86 (Px86)

Thread1 Thread2
4 4 A 4 +o4

4(Persistence Buffer ,

[(Persistent) Memory j

buffer/unbuffer order: consistency model

—— buffer/unbuffer order: persistency model

Persistent x86 (Px86)

Thread1 Thread2
o I

4(Persistence Buffer ,

[(Persistent) Memory j

buffer/unbuffer order: consistency model NVM

— Semantics
—— buffer/unbuffer order: persistency model (Px86)

Two equivalent formal models

Operational Declarative /Axiomatic
cpu) ... [cpu [init]
write / . \
read . and Wx1 A Wy]_
write-back l /" rf \\‘ l
[persistency buffer] Ry - B Rx
‘ persist l ‘

(memory j

Roadmap

v What semantics do programs have?
(operational, declarative/axiomatic)

v/ How can we avoid weak behaviours?
(flushes, fences)

» When is a persistent algorithm correct?
(invariants, persistent serializability/linearizability)

» What techniques can we use to establish correctness?
(program logics, model checking)

10

Persistent serializability (PSER)

Serialisability (SER)

All transactions appear to execute in a sequential order

Persistent Serialisability (PSER)

All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order

Persistent Serialisability (PSER)

All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order

Persistent Serialisability (PSER)

All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order

—>\T2 —>—>T5—>T6—>T7—>

‘ 161 ‘ |

all persist none persist

Persistent Serialisability (PSER)

All transactions appear to execute in a sequential order

A prefix of transactions appears to persist in the same sequential order
in each era

—— no crashes

=~ =[]

execution execution execution
— p———— > —> —

recovery recovery

Persistent Serialisability (PSER)

PSER

Strong guarantees
Intuitive semantics

Persistent Serialisability (PSER)

PSER Evaluation

1. Is PSER feasible?
2. |s PSER useful?

Is PSER Feasible”?

v PSER implementation in x86, ARM

Take SER Implementation — e.g. 2-PL
- add code for persistence
<+ add code to log metadata for recovery
- add recovery mechanism

recovery mechanism
6 — check log for incomplete transactions:

either complete
or rollback

Is PSER Useful?

Given library L (e.g. queue library):

1. Take any correct sequential implementation of L
2. wrap each operation in a PSER transaction
= correct, concurrent & persistent implementation of L

P
enqg(q,v)=
<eng_body >

deq(q)=
<deg_body >

A8

sequential queue imp.

~
eng(q,v)=

pser{
<eng body> }

deq(q)=
pser{
<deq body> }

correct
concurrent & persistent
queue imp.

Roadmap

v What semantics do programs have?
(operational, declarative/axiomatic)

v/ How can we avoid weak behaviours?
(flushes, fences)

v When is a persistent algorithm correct?
(invariants, persistent serializability/linearizability)

» What techniques can we use to establish correctness?
(program logics, model checking)

12

Program logics for persistency

POG: Persistent Owicki-Gries reasoning

Instrument program with additional variables:
» volatile x, — the latest observable value of x
> persisted x, — the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

x =1
clflush x
y:=1

See OOPSLA'20; the presentation here is somewhat simplified

14

POG: Persistent Owicki-Gries reasoning

Instrument program with additional variables:
» volatile x, — the latest observable value of x
> persisted x, — the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

x =1
Parallel context:
clflush x X, =X,
Yo =Y,
y:=1

See OOPSLA'20; the presentation here is somewhat simplified

14

POG: Persistent Owicki-Gries reasoning

Instrument program with additional variables:
» volatile x, — the latest observable value of x
> persisted x, — the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

x, =1
Parallel context:
X, = X, X, = X,
Y, =Y.,
y, =1

See OOPSLA'20; the presentation here is somewhat simplified

14

POG: Persistent Owicki-Gries reasoning

Instrument program with additional variables:

» volatile x, — the latest observable value of x
> persisted x, — the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{x» =0Ax,=0Ay, =0Ay, =0}

x, =1
Parallel context:
X, = X, Xo =X
Y, =Y
y, =1

v
See OOPSLA'20; the presentation here is somewhat simplified

14

POG: Persistent Owicki-Gries reasoning

Instrument program with additional variables:
» volatile x, — the latest observable value of x
> persisted x, — the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{x» =0Ax,=0Ay, =0Ay, =0}
x, =1
{x, =1Ax, €{0,1} Ay, =0Ay, =0} Parallel context:
X, =X, X, =X
Yo =Y,
y, =1

See OOPSLA'20; the presentation here is somewhat simplified

14

POG: Persistent Owicki-Gries reasoning

Instrument program with additional variables:
» volatile x, — the latest observable value of x
> persisted x, — the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{x» =0Ax,=0Ay, =0Ay, =0}

x, =1

{x, =1Ax, €{0,1} Ay, =0Ay, =0} Parallel context:
X =X X, =X
{x=1Ax,=1Ay,=0Ay, =0} Yo =Yy
y, =1

See OOPSLA20; the presentation here is somewhat simplified

14

POG: Persistent Owicki-Gries reasoning

Instrument program with additional variables:
» volatile x, — the latest observable value of x
> persisted x, — the persisted value of x

Use OGRA, a slight weakening of Owicki-Gries that is sound under x86-TSO

{x» =0Ax,=0Ay, =0Ay, =0}

x, =1

{x». =1Ax, € {0,1} Ay, =0Ay, =0}
X, =X,

{x». =1Ax,=1Ay,=0Ay, =0}

y, =1

{x=1Ax,=1Ay,=1Ay, €{0,1}}

See OOPSLA20; the presentation here is somewhat simplified

Parallel context:
X, =X,

Yo =Y.

14

Model checking for persistency

Software model checking

Given a program P and a property $:
Check that all executions of P satisfy ®.

» P - shared-memory concurrency + flushes/fences
» & - safety assertion, invariant over persisted state

» ‘Stateless’ enumeration of all reachable program states

Which kind of model to use?

Operational

CPU

read

write

write-back

CPU

¢

persistency buffer

)

|

persist i

|

(

memory

)

or

Declarative
[init]

AN

Wx1 Wyl Wzl
l: l , l yrf
12 > 2

Rx1 Ryl Rzl

Which kind of model to use?

Operational
CPU . CPU
write
read
write-back
[persistency buffer]
‘ persist i ‘
[memory J

v/ Easy to build an interpreter
X Tied to a specific model

X Many redundant executions

or

Declarative
[init]

AN

Wx1 Wyl Wzl
l: l , l yrf
12 > 2

Rx1 Ryl Rzl

X Not immediately executable
v/ Largely model-agnostic
v/ Almost no redundancy

16

Which kind of model to use?

Operational
depnlL cpitl __
| Initially, x =y =2z=0
“x=1||y:==1]|2z:=1 or
a=x || b=y | c=z
‘v'"K"""P‘*‘“""-“""‘]'""""“"""")""‘""""""":
o nersist | .. [)

Has 6!/23 = 90 interleavings
~but only one execution graph -

X Tied to a specific model

X Many redundant executions

Declarative
[init]

2N

Wx1 Wyl Wzl
l: l) l Y rf
3 > 3

Rx1 Ryl Rz1

X Not immediately executable
Largely model-agnostic

Almost no redundancy

16

Using declarative models pays off!

RMEM benchmarks

RMEM GenMC
DQ/211-2-1 17234 0.17
DQ-opt/211-2-1 770.45 0.17

STC/210-011-000 1100.35 0.06
STC-opt/210-011-000 1154.68 0.10
QU /100-100-010 1099.20 0.06
QU-opt/100-100-010 * 0.06

Verification times in seconds

» RMEM — operational ARM model with a few optimisations
» GenMC — declarative memory model

Basic model checking algorithm

Construct all consistent execution graphs incrementally

» Fix insertion order (e.g. increasing thread ID order)

See POPL'18 and PLDI'19 papers for more details

18

Basic model checking algorithm

Construct all consistent execution graphs incrementally
» Fix insertion order (e.g. increasing thread ID order)

x:lea::x J

Wx0

See POPL'18 and PLDI'19 papers for more details

18

Basic model checking algorithm

Construct all consistent execution graphs incrementally
» Fix insertion order (e.g. increasing thread ID order)

x:lea::x J

Wx0 Wx0

-~ P/
Wx1

See POPL'18 and PLDI'19 papers for more details

18

Basic model checking algorithm

Construct all consistent execution graphs incrementally
» Fix insertion order (e.g. increasing thread ID order)

When adding a read r:
» Consider all possible writes that r could read from.

x:lea::x J

Wx0 Wx0

-~ P/
Wx1

See POPL'18 and PLDI'19 papers for more details

18

Basic model checking algorithm

Construct all consistent execution graphs incrementally
» Fix insertion order (e.g. increasing thread ID order)

When adding a read r:
» Consider all possible writes that r could read from.

x:lea::x J

Wx0 . Wx0 @ Wx0 @ wx0
AN A /N
Wx1 Wx1 Rx Wx1-->Rx

See POPL'18 and PLDI'19 papers for more details

18

Basic model checking algorithm

Construct all consistent execution graphs incrementally
» Fix insertion order (e.g. increasing thread ID order)

When adding a read r:
» Consider all possible writes that r could read from.

x: =1 H a:=x

J Add a := x first

Wx0 Wx0
s rf
Rx

See POPL'18 and PLDI'19 papers for more details

18

Basic model checking algorithm

Construct all consistent execution graphs incrementally
» Fix insertion order (e.g. increasing thread ID order)

When adding a read r:
» Consider all possible writes that r could read from.

When adding a write w:
» Reuvisit existing reads to instead read from w.

x: =1 H a:=x

J Add a := x first

Wx0 Wx0
s rf
Rx

See POPL'18 and PLDI'19 papers for more details

18

Basic model checking algorithm

Construct all consistent execution graphs incrementally
» Fix insertion order (e.g. increasing thread ID order)

When adding a read r:
» Consider all possible writes that r could read from.

When adding a write w:
» Reuvisit existing reads to instead read from w.

x =1 H a:=x

J Add a := x first

Wx0 Wx0 @D wx0 @ wx0

«rf N
S A / 2\
Rx Wx1 Rx Wx1-->Rx

See POPL'18 and PLDI'19 papers for more details

18

Checking persistency assertions

x:=1 H y =2 H z:=3 J

Check that y # 1 after a crash

19

Checking persistency assertions

x:=1 H y =2 H z:=3 J

Check that y # 1 after a crash
Simple approach

» Enumerate all post-crash states of a program

» Check that each persisted state satisfies the assertion

Total p-ordering

» In which order did the durable
events persist?

» Take any prefix of that order
» In total, 4 x 3! = 24 cases

19

Checking persistency assertions

x:=1 H y =2 H z:=3 J

Check that y # 1 after a crash
Simple approach

» Enumerate all post-crash states of a program

» Check that each persisted state satisfies the assertion

Total p-ordering Partial p-ordering
» In which order did the durable » Which durable events have
events persist? persisted?
» Take any prefix of that order » Their relative ordering is irrelevant
» In total, 4 x 3! = 24 cases » In total, 23 = 8 cases

19

Checking persistency assertions

x:=1 H y =2 H z:=3
Check that y # 1 after a crash
Simple approach
» Enumerate all post-crash states of a program

» Check that each persisted state satisfies the assertion
Total p-orderiné The assertion mentions only the variable y; -
~whether x := 1 and z := 3 persist is irrelevant

> In which ore ents have

events persist? persisted?
» Take any prefix of that order » Their relative ordering is irrelevant
» In total, 4 x 3! = 24 cases » In total, 23 = 8 cases

19

Recovery observer

Treat the persistency assertions as an additional thread

a:=
x:=1 H y:i=2 H z:=3 f asser}l/:(a#l)

... with somewhat different consistency axioms

» Enforce snapshot atomicity
(all recovery reads of y read from the same write)

» Observing a durable event = observe all events persisted before it

In our example, there are only 2 execution graphs

See POPL'21 paper on PerSeVerE for more details

20

Summary
v What semantics do programs have?
(operational, declarative/axiomatic)

v/ How can we avoid weak behaviours?
(flushes, fences)

v When is a persistent algorithm correct?
(invariants, persistent serializability/linearizability)

v What techniques can we use to establish correctness?
(program logics, model checking)

21

	Weak persistency semantics
	Persistent serializability (PSER)
	Program logics for persistency
	Model checking for persistency

