University of Udine Department of Mathematics, Computer Science and Physics

Closure Hyperdoctrines

Davide Castelnovo castelnovo.davide@spes.uniud.it Marino Miculan marino.miculan@uniud.it

> CALCO 2021, 31/08 - 03/09

Recent interest in modal logic modeling the notion of "proximity", such as the *Spatial Logic for Closure Spaces* (SLCS) introduced by Ciancia et al. [2, 1].

The central concept is that of *closure space* or *pretopological space*.

Definition ([1, 2, 4])

A closure space is a pair (X, \mathfrak{c}) where X is a set and \mathfrak{c} is a function $\mathcal{P}(X) \to \mathcal{P}(X)$ such that, for any A and $B \subset X$:

- $\mathfrak{c}(\emptyset) = \emptyset;$
- $A \subset \mathfrak{c}(A);$
- $\mathfrak{c}(A \cup B) = \mathfrak{c}(A) \cup \mathfrak{c}(B).$

In a closure space we can define the *until operator* \mathfrak{U} :

Definition

Give a closure space (X, \mathfrak{c}) and two subset A and B, we define the set $A\mathfrak{U}B$ as

$$\{x\in A\mid \exists C\subset A. (x\in C\wedge ((\mathfrak{c}(C)\cap (X\smallsetminus A))\subset B))\}$$

Intuitively, if $\mathfrak{c}(A)$ is the set of points "reachable" from A, then $A\mathfrak{U}B$ is the subset of A from which there is no way out without passing through B.

The main aim of this work is providing a theoretical framework for investigating the logical aspects of (pre)closure spaces. Namely, we

- 1 introduce the new notion of *closure (hyper)doctrine*
- show that this notion covers many others situations besides pretopological spaces;
- ③ provide a syntax and a sequent calculus for a logic endowed with a notion of nearness through a closure operator;
- provide a categorical semantics for this logic, by means of closure (hyper)doctrines;
- ⁶ prove a completeness theorem for such a semantics.

Let **C** be a category with finite products. An *elementary hyperdoctrine* on **C** is a functor $\mathscr{P} : \mathbf{C}^{op} \to \mathbf{HA}$ (the category of Heyting algebras) such that for each arrow $f : C \to D$, $\mathscr{P}_f : \mathscr{P}(D) \to \mathscr{P}(C)$ has a left and right adjoint \exists_f and \forall_f satysfying

$$\exists_{\pi_{C'}} \circ \mathscr{P}_{1_D \times f} = \mathscr{P}_f \circ \exists_{\pi_C} \quad \forall_{\pi_{C'}} \circ \mathscr{P}_{1_D \times f} = \mathscr{P}_f \circ \forall_{\pi_C}$$

Given two elementary hyperdoctrines $\mathscr{P} : \mathbf{C}^{op} \to \mathbf{HA}$ and $\mathscr{S} : \mathbf{D}^{op} \to \mathbf{HA}$, a morphism $\mathscr{P} \to \mathscr{S}$ is a couple (\mathscr{F}, η) where $\mathscr{F} : \mathbf{C} \to \mathbf{D}$ is a product preserving functor and η is a natural transformation $\mathscr{P} \to \mathscr{S} \circ \mathscr{F}^{op}$ preserving $\exists_{\Delta_C}(\top)$ (the *fibered equality* at C) and quantifiers.

Ementary hyperdoctrines provide semantics for (multi-sorted) full FOL with equality.

We can weaken it in various way:

- **doctrine:** functor valued in Heyting or boolean algebras or meet semilattices, suited for propositional logic (base category may not have cartesian products);
- **existential doctrine:** functor valued in meet semilattices or in bounded lattices, with the existential quantifier satisfying *Frobenius reciprocity*:

$$\exists_f(\mathscr{P}_f(\beta) \land \alpha) = \beta \land \exists_f(\alpha)$$

A closure operator on a hyperdoctrine \mathscr{P} is a family of monotone functions $\mathfrak{c}_C : \mathscr{P}(C) \to \mathscr{P}(C)$ indexed by the objects of \mathbf{C} s.t.:

- $1_{\mathcal{P}(C)} \leq \mathfrak{c}_C;$
- $\mathfrak{c}_C \circ \mathscr{P}_f \leq \mathscr{P}_f \circ \mathfrak{c}_D$ for any arrow $f: C \to D$.

A closure hyperdoctrine is a couple $(\mathscr{P}, \mathfrak{c})$ formed by an hyperdoctrine and a closure operator on it.

We can mimic this definition for other kinds of doctrines getting *closure doctrines, closure existential doctrines,* etc... We can ask other properties for c, like (as in the case of SLCS) *additivity* and *groundedness*:

$$\mathfrak{c}_C(\alpha \lor \beta) = \mathfrak{c}_C(\alpha) \lor \mathfrak{c}_C(\beta) \qquad \mathfrak{c}_C(\bot) = \bot$$

A morphism $(\mathscr{P}, \mathfrak{c}) \to (\mathscr{S}, \mathfrak{d})$ between two closure hyperdoctrines $\mathscr{P}: \mathbf{C}^{op} \to \mathbf{HA} \in \mathscr{S}: \mathbf{D}^{op} \to \mathbf{HA}$ is an arrow of hyperdoctrines (\mathscr{F}, η) between \mathscr{P} and \mathscr{S} such that

$$\mathfrak{d}_{\mathscr{F}(C)} \circ \eta_C \leq \eta_C \circ \mathfrak{c}_C$$

 (\mathscr{F},η) is open if equality holds.

We will denote by \mathbf{cEHD} the category of closure hyperdoctrines.

We can define similar categories of *closure doctrines*, *closure existential doctrines*, etc...

SLCS

We can use the usual power set functor in order to define a closure hyperdoctrine on pretopological spaces. Let $\mathscr{P}(X,c):=2^X$ and set

$$\mathfrak{c}_{(X,c)}: 2^X \to 2^X$$
$$A \mapsto c(A)$$

The semantics in this closure hyperdoctrine gives us back the SLCS's semantics developed in [1, 2].

Fuzzy sets

The category of *fuzzy set* has as objects, couples (A, α) where A is a set and $\alpha \to [0, 1]$ a function. An arrow $(A, \alpha) \to (B, \beta)$ is a function such that $\alpha(x) \leq \beta(f(x))$. A *fuzzy subset of* (A, α) is a function $\xi : A \to [0, 1]$ with the property that $\xi(x) \leq \alpha(x)$. Assigning to (A, α) the set of its fuzzy subsets gives an elementary hyperdoctrine.

Let now ${\mathcal E}$ be a family of weights $\epsilon_{(A,\alpha)}:(A,\alpha)\to [0,1],$ we can define

$$\mathfrak{c}_{(A,\alpha)}(\xi)(x) := \inf\{\xi(x) + \epsilon(x), \alpha(x)\}\$$

In this way we get a closure operator that is additive but doesn't preserve the bottom subset.

Discrete probability space

For a set X let $\mathscr{D}(X)$ be the set of probability measures on 2^X , a *coalgebra* for \mathscr{D} is a function $\gamma_X : X \to \mathscr{D}(X)$. Let $\mathscr{P}((X, \gamma_X)) := 2^X$ and fix a $p \in [0, 1]$, the family given by:

$$\mathfrak{c}_{X,p}: 2^X \to 2^X \qquad A \mapsto A \cup \{x \in X \mid p \le \gamma_X(x)(A)\}$$

is a closure operator.

Remark

Using the notion of predicate liftings (see Jacobs and Sokolova [6]), this example can be seen an instance of a general schema for many categories of coalgebras.

In general, categories of coalgebras do not have products, so we get only a doctrine.

Let Σ be a first order signature, a *context* Γ is a finite list $[x_i : \sigma_i]_{i=1}^n$ of typed variables. The rules for contexts and well-formed formulae for a signature Σ are the usual ones ([5]) plus:

$$\frac{\Gamma \vdash \phi : \mathsf{Prop}}{\Gamma \vdash \mathcal{C}(\phi) : \mathsf{Prop}} \ \mathcal{C}\text{-} \mathsf{F} \qquad \frac{\Gamma \vdash \phi : \mathsf{Prop}}{\Gamma \vdash \phi \mathcal{U}\psi : \mathsf{Prop}} \ \mathcal{U}\text{-} \mathsf{F}$$

- ϕ such that $\Gamma \vdash \phi$: Prop means the "region" of Γ composed by points satisfying ϕ ;
- $C(\phi)$ is means the set of points "near" ϕ ;
- $\phi \mathcal{U} \psi$ (to be read " ϕ until ψ ") means the subregion of ϕ from which there is no "escape" without passing through ψ .

We add to the usual rules of (intuitionistic) sequent calculus the following rules for C:

$$\frac{\Gamma \mid \Phi, \phi \vdash \psi}{\Gamma \mid \Phi, \phi \vdash \mathcal{C}(\phi)} \operatorname{CL-1} \qquad \frac{\Gamma \mid \Phi, \phi \vdash \psi}{\Gamma \mid \Phi, \mathcal{C}(\phi) \vdash \mathcal{C}(\psi)} \operatorname{CL-2}$$

and for \mathcal{U} :

$$\frac{\Gamma \mid \Phi, \varphi \vdash \phi \qquad \Gamma \mid \Phi, \mathcal{C}(\varphi), \neg \phi \vdash \psi}{\Gamma \mid \Phi, \varphi \vdash \phi \mathcal{U} \psi} \mathcal{U}\text{-}\mathbf{I}$$

$$\frac{\text{for all } \varphi \in \mathsf{u}_{(\Gamma, \Phi)}(\phi, \psi) : \Gamma \mid \Phi, \varphi \vdash \theta}{\Gamma \mid \Phi, \phi \mathcal{U} \psi \vdash \theta} \mathcal{U}\text{-}\mathbf{E}$$

where:

$$\mathsf{u}_{(\Gamma,\Phi)}(\phi,\psi) := \{ \varphi \text{ such that } \Gamma \mid \Phi, \varphi \vdash \phi, \Gamma \mid \Phi, \mathcal{C}(\varphi), \neg \varphi \vdash \psi \}$$

Remark

In order to get a logic more similar to SLCS [2, 1] we can add the rules:

$$\frac{1}{\Gamma \mid \Phi, \mathcal{C}(\bot) \vdash \bot} CL-3$$

$$\frac{1}{\Gamma \mid \Phi, \mathcal{C}(\phi \lor \psi) \vdash \mathcal{C}(\phi) \lor \mathcal{C}(\psi)} CL-4$$

$$\frac{1}{\Gamma \mid \Phi, \mathcal{C}(\phi) \lor \mathcal{C}(\psi) \vdash \mathcal{C}(\phi \lor \psi)} CL-5$$

Adding these rules will be reflected by additional algebraic properties of the closure operator we will use to interpret C.

We will now introduce a *syntactic hyperdoctrine* in order to define models.

Definition

Given a signature Σ , its *classifying category* is the category $\mathbf{Cl}(\Sigma)$ in which:

- objects are contexts;
- Given $\Gamma := [x_i : \sigma_i]_{i=1}^n$, $\Delta = [y_i : \tau_i]_{i=1}^m$ an arrow $\Gamma \to \Delta$ is a *m*-uple of terms $(T_1, ..., T_m)$ such that $\Gamma \vdash T_i : \tau_i$ for any *i*;
- composition is given by substitution.

For any context Γ we define $\mathbf{Form}_{\Sigma}(\Gamma)$ to be the set of formulae ϕ such that $\Gamma \vdash \phi$: Prop. ϕ and $\psi \in \mathbf{Form}_{\Sigma}(\Gamma)$ are *provably* equivalent if $\Gamma \mid \psi \vdash \phi$ and $\Gamma \mid \phi \vdash \psi$, we will denote the quotient of $\mathbf{Form}_{\Sigma}(\Gamma)$ by this relation with $\mathcal{L}(\Sigma)(\Gamma)$, $[\phi]$ will denote the class of ϕ in it.

Remark

 $\mathcal{L}(\Sigma)(\Gamma)$ equipped with the order $[\phi] \leq [\psi]$ if and only if $\Gamma \mid \phi \vdash \psi$ is derivable is an Heyting algebra.

Theorem

For any signature Σ , the functor sending Γ to $\mathcal{L}(\Sigma)(\Gamma)$ gives us an hyperdoctrine $\mathcal{L}(\Sigma)$ and $[\phi] \mapsto [\mathcal{C}(\phi)]$ is a closure operator.

A model in a closure hyperdoctrine $(\mathcal{P}, \mathfrak{c})$ is an open morphism $(\mathscr{M},\mu):(\mathscr{L}(\Sigma),\mathscr{C})\to(\mathscr{P},\mathfrak{c}).$ A sequent $\Gamma \mid \Phi \vdash \psi$ is satisfied by (\mathcal{M}, μ) if

$$\bigwedge_{\phi \in \Phi} \mu_{\Gamma}(\phi) \le \mu_{\Gamma}(\psi)$$

Remark

Notice that there are no conditions on the image of $\phi \mathcal{U} \psi$.

Theorem

A sequent $\Gamma \mid \Phi \vdash \psi$ is satisfied by the generic model $(1_{\mathbf{Cl}(\Sigma)}, 1_{\mathcal{L}(\Sigma)})$ if and only if it is derivable.

We have not put any condition on the interpretation of $\phi \mathcal{U} \psi$. One could wonder what kind of additional structure should be required to interpret it.

- For a model (\mathcal{M}, μ) we can ask that $\mu_{\Gamma}([\phi \mathcal{U}\psi])$ to be the supremum of $\mu_{\Gamma}(\mathsf{u}_{(\Gamma,\Phi)}(\phi,\psi))$ for any Γ .
- Or we can ask for (limited) second order quantification restricting to model in *triposes* ([7]) and define $\phi \mathcal{U} \psi$ to be a shorthand for

$$\exists \alpha \in \mathscr{P}(C) (x \in \alpha \land \alpha \le \phi \land ((\mathcal{C}(\alpha) \land \neg \alpha) \le \psi))$$

It turns out that in the case of pretopological spaces these two approaches are equivalent, but this is not true in general.

- **1** Provide interpretations of \mathcal{U} that limit the infinitary nature of rule \mathcal{U} -E, maybe using some kind of fixed point operator.
- **2** In [1] SLCS is improved with a notion of *path* (of some shape *I*) and a *surrounded* operator S such that $\phi S \psi$ models the notion of "there is no path out of ϕ that doesn't pass through ψ ". We want to add this additional operator to our categorical framework.
- ③ Investigate connection with closure operators studied in the context of categorical topology (see, e.g. [3]).

Bibliography

- Vincenzo Ciancia et al. "Spatial logic and spatial model checking for closure spaces". In: International School on Formal Methods for the Design of Computer, Communication and Software Systems. Springer. 2016, pp. 156–201.
- [2] Vincenzo Ciancia et al. "Specifying and verifying properties of space". In: IFIP International Conference on Theoretical Computer Science. Springer. 2014, pp. 222–235.
- [3] Dikran Dikranjan and Walter Tholen. Categorical structure of closure operators: with applications to topology, algebra and discrete mathematics. Vol. 346. Springer Science & Business Media, 2013.
- [4] Antony Galton. "A generalized topological view of motion in discrete space". In: Theoretical Computer Science 305.1-3 (2003), pp. 111–134.
- [5] Bart Jacobs. Categorical logic and type theory. Vol. 141. Elsevier, 1999.
- Bart Jacobs and Ana Sokolova. "Exemplaric expressivity of modal logics". In: Journal of logic and computation 20.5 (2010), pp. 1041–1068.
- [7] Andrew M. Pitts. "Tripos theory in retrospect". In: Mathematical <u>structures in computer science 12.3 (2002)</u>, pp. 265–279 Davide Castelnovo Closure Hyperdoctrines

20/20