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Fox's theorem for cartesian categories!

A symmetric monoidal category (C,®, /) is cartesian if and only if every
object X is equipped with morphisms

{:X%X@X and Xe: X — | such that

A Y

Y fY
2. Forall f: X — Y: 7] [f]Ye - e
Y fY

3. The choice of comonoid on every object is coherent with the monoidal
structure in the sense that

X o

XRYg —
XYy = y

1Fox, “Coalgebras and cartesian categories’’, 1976.



Lawvere theories for terms

Let £ = (X,P) and T be a theory in regular logic with equality.
The Lawvere Theory generated by ¥ is a category Ly.

o Objects: natural numbers.
@ Morphisms n — m: tuples (ti,...,tn) where Var(t;) C {x1,..., X}

<t1,...,tm> <Sl,...,5/>
—_—m —

@ Composition: for n /

<51, .. ,S/) o (tl,. .. tm> = (Sl[f;/)?;], . ,S/[E;/)?;]>
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The Lawvere Theory generated by ¥ is a category Ly.

o Objects: natural numbers.
@ Morphisms n — m: tuples (ti,...,tn) where Var(t;) C {x1,..., X}

<t1,...,tm> <51,...,5/>
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@ Composition: for n /

(st,-.5) 0 (t1, . tm) = (s1[F/R), .., sI[E/%])
Ly is cartesian: n X m = n+ m with projections

n+m

(xl,..y w:.l,..wxm)
n m



The Lindenbaum-Tarski doctrine

For n € N define
LT(n) = {[¢] | ¢ formula in L with free variables in {x1,...,xn} }

where [¢] = [¢'] if and only if ¢ 4 ¢ in the theory T.
Set [¢] < [¢] if and only if ¢ 1) in T.



The Lindenbaum-Tarski doctrine

For n € N define
LT(n) = {[¢] | ¢ formula in L with free variables in {x1,...,xn} }

where [¢] = [¢'] if and only if ¢ 4 ¢ in the theory T.
Set [¢] < [¢] if and only if ¢ 1) in T.
L2P Ll infSL
m +— LT(m)
(tr,s tm)[ f[ﬁ/)?i]
n+— LT(n)



The Lindenbaum-Tarski doctrine

For n € N define

LT(n) = {[¢] | ¢ formula in L with free variables in {x1,...,xn} }

where [¢] = [¢'] if and only if ¢ 4 ¢ in the theory T.
Set [¢] < [¢] if and only if ¢ 1) in T.

L2 L% nfSL

m +— LT(m)
(tio m[ f[a/xﬁ-]

n+— LT(n)

Notice: for m1 = (x1,...,Xp): n+ m — nin Ly,
LT (m1): LT(n) — LT(n+ m) has a left adjoint 3, : LT(n+ m) — LT(n)

I, (@) = Ixm ... Ixnp1. 0



Elementary existential doctrines

An elementary existential doctrine? is a functor P: C°P — InfSL, with C
cartesian, such that

o for all A € C there is an element 64 € P(A x A) satisfying certain
adjoint conditions,

o for all m: X x A — A projection, P, has a left adjoint
dr: P(X x A) — P(A) satisfying certain conditions.

2Majetti and Rosolini, “Quotient Completion for the Foundation of Constructive Mathematics”, 2013.
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An elementary existential doctrine? is a functor P: C°P — InfSL, with C
cartesian, such that

o for all A € C there is an element 64 € P(A x A) satisfying certain
adjoint conditions,

o for all m: X x A — A projection, P, has a left adjoint
dr: P(X x A) — P(A) satisfying certain conditions.

Powerset P: Set®® — InfSL. For f: X — Y, Z € P(Y):

P(F)(Z2)={xe X | f(x) € Z} € P(X).
o da={(a,a) | ac A} e P(Ax A)
@ For m: X X A — A projection:

P(X x A) el P(A)
S——>{aceA|3Ixe X.(x,a) € S}

2Majetti and Rosolini, “Quotient Completion for the Foundation of Constructive Mathematics”, 2013



Cartesian bicategories

A cartesian bicategory> is a Poset-enriched, symmetric monoidal category
(B, ®, 1) where every object X € B is equipped with morphisms

XH::X—>X®X and —Xe: X — [/ such that

1. —XC and —X e form a cocommutative comonoid

N N . .. N N :
2. { and —Xe have right adjoints } and ex- that is

3. The Frobenius law holds: ) 2 o H - E .

4. ForR:X%Y:@C< fRpe < —Xe

5. The choice of comonoid is coherent with the monoidal structure.

3Carboni and Walters, “Cartesian Bicategories I, 1987.



The cartesian bicategory generated by a regular theory

CBs p: the free cartesian bicategory whose objects are natural numbers
and generators for morphisms are given by the following rules:

fex ar(f):nZ PeP ar(P)=n
n n—1 :n—>0

where we require that:

f
n.< = n..=4n.




Terms and formulae in CBs p

Interpretation of terms and formulae, where Var(t;) C {x1,...,xa}:

1le
[x] = = [t tm)] = ol el 2D
1o
— _n =4 =
[[<>]] = |I<t15 RN tm)]] - Kty ..., tm)] =1
[T] = 2 [P(ta.- - tm)] = {1} )

[t1 = ©] = {0 )]

[¢]

[[HXIH’I' (b]] = FreeVar((b) c {X17 ce 7Xn+1}

[pAy] == FreeVar(¢) = FreeVar(y) C {x1,...,xn}



Terms and formulae in CBs p

Interpretation of terms and formulae, where Var(t;) C {x1,...,xa}:

1l e
[xi :,’1 [[f<t1,...,tm>]]:
[O0] = 2o [t ... tm)] = = [t]

[[T]]:i. |IP<t17~--7tm>]]: e, tm) m
[t1 = ©] = {0 )]

[oAY] = FreeVar(¢) = FreeVar(y) C {x1,...,%n}

[[HXIH’I' (b]] = FreeVar(qﬁ) c {X17 ce 7Xn+1}

[Fx. (PO, x1) A f(a) = x2)] =




From cartesian bicategories to doctrines

Let B be a cartesian bicategory and X,Y € B. The poset Homg(X, Y) has
a top element given by Xe oY and the meet of R,S: X — Y is:



From cartesian bicategories to doctrines

Let B be a cartesian bicategory and X,Y € B. The poset Homg(X, Y) has
a top element given by e Y- and the meet of R,S: X — Y is:

L

s
BeP Homs(=.1), Set
Y ——— Homg(Y,/)
R} |—oR

X ——— Homg(X, /)



From cartesian bicategories to doctrines

Let B be a cartesian bicategory and X,Y € B. The poset Homg(X, Y) has
a top element given by e Y- and the meet of R,S: X — Y is:

S

L

Homg(—,/)
_—

(MapB)°P InfSL
Y —— Homg(Y,/)
RT lfoR

X —— Homgp(X,/)



From cartesian bicategories to doctrines

Let B be a cartesian bicategory and X,Y € B. The poset Homg(X, Y) has
a top element given by e Y- and the meet of R,S: X — Y is:

S

L

Homg(—,/)
_—

(MapB)°P InfSL
Y —— Homg(Y,/)
RT lfoR

X —— Homgp(X,/)

R(B) = Homg(—,/): (MapB)°P — InfSL is an elementary existential

doctrine where, for 7: X ® A — A projection:
X

S = pae cHomp(Aw A ) 30 (7)) = &)

A A



From doctrines to cartesian bicategories*

If P: C°P — InfSL is an EED, then the category «7p is a CBC, where:
@ Objects: those of C.
@ Morphisms X — Y: elements of P(X x Y).

e Composition of f € Hom, (X, Y) = P(X x Y) and
g € Homg,(Y,Z) = P(Y x Z):

XxXYxZ
g0 F =Ty (Pry(F) A Pry(g)) BN
XxY X xZ Y xZ

4Maietti and Rosolini, “Unifying Exact Completions”, 2015.
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EED 1  CBC £P) =
~_ R(B) = Homp(—,/): (MapB)°® — InfSL
R

L is not faithful. Consider ¥; = {f}, X2 = {g1,42} and the two doctrines:
L L nfSL and  LP ¥ 1P L infsL

where Q(n) = nand Q(g1) = f = Q(g2). Then:

Lgp ETo9% jnfsL
m +——— LT(m)
(tl,...,tm>’ f[Q(ti)/)?i]

n+——— LT(n)

L(LT) = L(LT o Q°P) but they are not isomorphic as doctrines.



A Fox theorem for regular logic

To have an equivalence, we need the unit np: P — RL(P) to be a natural
isomorphism.

RL(P) = Homg,(—,1) = P(— x I): Map(e/p)°® — InfSL.

Hence we need that C = Map («/p). This happens if and only if:

1. P has comprehensive diagonals,

2. P satisfies the axiom of unique choice.®

5Maietti, Pasquali, and Rosolini, “Triposes, exact completions, and Hilbert's s-operator”’, 2017.



A Fox theorem for regular logic

To have an equivalence, we need the unit np: P — RL(P) to be a natural
isomorphism.

RL(P) = Homg,(—,1) = P(— x I): Map(e/p)°® — InfSL.

Hence we need that C = Map («/p). This happens if and only if:
1. P has comprehensive diagonals,

2. P satisfies the axiom of unique choice.®

Proposition
Let B be a cartesian bicategory. Then R(B) satisfies (1) and (2).

L
R

The adjunction EED 1 CBC restricts to an equivalence when

\_/

R
EED is replaced with its subcategory EED of doctrines satisfying (1), (2).

5Maietti, Pasquali, and Rosolini, “Triposes, exact completions, and Hilbert's s-operator”’, 2017.



