On Doctrines and Cartesian Bicategories

Filippo Bonchi, Alessio Santamaria, Jens Seeber, Paweł Sobociński

Università di Pisa

CALCO, 2nd September 2021 Salzburg, Austria

Fox's theorem for cartesian categories¹

A symmetric monoidal category (\mathbb{C}, \otimes, I) is cartesian if and only if every object X is equipped with morphisms

$$-x \bullet : X \to X \otimes X$$
 and $-x \bullet : X \to I$ such that

3. The choice of comonoid on every object is coherent with the monoidal structure in the sense that

¹Fox, "Coalgebras and cartesian categories", 1976.

Let $\mathcal{L} = (\Sigma, \mathbb{P})$ and \mathcal{T} be a theory in regular logic with equality. The *Lawvere Theory* generated by Σ is a category L_{Σ} .

- Objects: natural numbers.
- Morphisms $n \to m$: tuples $\langle t_1, \ldots, t_m \rangle$ where $Var(t_i) \subseteq \{x_1, \ldots, x_n\}$.
- Composition: for $n \xrightarrow{\langle t_1, \dots, t_m \rangle} m \xrightarrow{\langle s_1, \dots, s_l \rangle} I$

$$\langle s_1,\ldots,s_l \rangle \circ \langle t_1,\ldots,t_m \rangle = \langle s_1[\vec{t_i}/\vec{x_i}],\ldots,s_l[\vec{t_i}/\vec{x_i}] \rangle$$

Let $\mathcal{L} = (\Sigma, \mathbb{P})$ and \mathcal{T} be a theory in regular logic with equality. The *Lawvere Theory* generated by Σ is a category L_{Σ} .

- Objects: natural numbers.
- Morphisms $n \to m$: tuples $\langle t_1, \ldots, t_m \rangle$ where $Var(t_i) \subseteq \{x_1, \ldots, x_n\}$.
- Composition: for $n \xrightarrow{\langle t_1, ..., t_m \rangle} m \xrightarrow{\langle s_1, ..., s_l \rangle} I$

$$\langle s_1,\ldots,s_l
angle \circ \langle t_1,\ldots,t_m
angle = \langle s_1[\vec{t_i}/\vec{x_i}],\ldots,s_l[\vec{t_i}/\vec{x_i}]
angle$$

 L_{Σ} is cartesian: $n \times m = n + m$ with projections

The Lindenbaum-Tarski doctrine

For $n \in \mathbb{N}$ define

 $LT(n) = \{ [\phi] \mid \phi \text{ formula in } \mathcal{L} \text{ with free variables in } \{x_1, \dots, x_n\} \}$

where $[\phi] = [\phi']$ if and only if $\phi \dashv \phi'$ in the theory \mathcal{T} . Set $[\phi] \leq [\psi]$ if and only if $\phi \vdash \psi$ in \mathcal{T} .

The Lindenbaum-Tarski doctrine

For $n \in \mathbb{N}$ define

 $LT(n) = \{ [\phi] \mid \phi \text{ formula in } \mathcal{L} \text{ with free variables in } \{x_1, \dots, x_n\} \}$

where $[\phi] = [\phi']$ if and only if $\phi \dashv \phi'$ in the theory \mathcal{T} . Set $[\phi] \leq [\psi]$ if and only if $\phi \vdash \psi$ in \mathcal{T} .

The Lindenbaum-Tarski doctrine

For $n \in \mathbb{N}$ define

 $LT(n) = \{ [\phi] \mid \phi \text{ formula in } \mathcal{L} \text{ with free variables in } \{x_1, \dots, x_n\} \}$

where $[\phi] = [\phi']$ if and only if $\phi \dashv \phi'$ in the theory \mathcal{T} . Set $[\phi] \leq [\psi]$ if and only if $\phi \vdash \psi$ in \mathcal{T} .

$$\begin{array}{ccc} L_{\Sigma}^{\mathrm{op}} \xrightarrow{LT} \mathrm{InfSL} \\ m \longmapsto LT(m) \\ \langle t_{1}, \dots, t_{m} \rangle & & & \downarrow \cdot [t_{i}^{*}/x_{i}^{*}] \\ n \longmapsto LT(n) \end{array}$$

Notice: for $\pi_1 = \langle x_1, \dots, x_n \rangle$: $n + m \to n$ in L_{Σ} , $LT(\pi_1)$: $LT(n) \to LT(n + m)$ has a left adjoint $\exists_{\pi_1} \colon LT(n + m) \to LT(n)$ $\exists_{\pi_1}(\phi) = \exists x_m \dots \exists x_{n+1} \cdot \phi$

Elementary existential doctrines

An elementary existential doctrine² is a functor $P: \mathbb{C}^{op} \to InfSL$, with \mathbb{C} cartesian, such that

- for all A ∈ C there is an element δ_A ∈ P(A × A) satisfying certain adjoint conditions,
- for all $\pi: X \times A \to A$ projection, P_{π} has a left adjoint $\exists_{\pi}: P(X \times A) \to P(A)$ satisfying certain conditions.

²Maietti and Rosolini, "Quotient Completion for the Foundation of Constructive Mathematics", 2013.

Elementary existential doctrines

An elementary existential doctrine² is a functor $P: \mathbb{C}^{op} \to InfSL$, with \mathbb{C} cartesian, such that

- for all A ∈ C there is an element δ_A ∈ P(A × A) satisfying certain adjoint conditions,
- for all $\pi: X \times A \to A$ projection, P_{π} has a left adjoint $\exists_{\pi}: P(X \times A) \to P(A)$ satisfying certain conditions.

Example

Powerset \mathcal{P} : Set^{op} \rightarrow InfSL. For $f: X \rightarrow Y$, $Z \in \mathcal{P}(Y)$:

$$\mathcal{P}(f)(Z) = \{x \in X \mid f(x) \in Z\} \in \mathcal{P}(X).$$

- $\delta_A = \{(a, a) \mid a \in A\} \in \mathcal{P}(A \times A)$
- For $\pi: X \times A \rightarrow A$ projection:

$$\mathcal{P}(X \times A) \xrightarrow{\exists_{\pi}} \mathcal{P}(A)$$
$$S \longmapsto \{a \in A \mid \exists x \in X. (x, a) \in S\}$$

²Maietti and Rosolini, "Quotient Completion for the Foundation of Constructive Mathematics", 2013.

Cartesian bicategories

A cartesian bicategory³ is a Poset-enriched, symmetric monoidal category (\mathbb{B}, \otimes, I) where every object $X \in \mathbb{B}$ is equipped with morphisms

$$-x \bullet : X \to X \otimes X$$
 and $-x \bullet : X \to I$ such that

5. The choice of comonoid is coherent with the monoidal structure.

³Carboni and Walters, "Cartesian Bicategories I", 1987.

 $CB_{\Sigma,\mathbb{P}}$: the free cartesian bicategory whose objects are natural numbers and generators for morphisms are given by the following rules:

$$\frac{f \in \Sigma \quad ar(f) = n}{\frac{n}{f} - : n \to 1} \Sigma \qquad \frac{P \in \mathbb{P} \quad ar(P) = n}{\frac{n}{P} : n \to 0} \mathbb{P}$$

where we require that:

Terms and formulae in $CB_{\Sigma,\mathbb{P}}$

Interpretation of terms and formulae, where $Var(t_j) \subseteq \{x_1, \ldots, x_n\}$:

$$\begin{split} \llbracket x_i \rrbracket &= \underbrace{\stackrel{i \\ i \\ n \\ \vdots \\ n \\ \vdots \\ \bullet} } \\ \llbracket f \langle t_1, \dots, t_m \rangle \rrbracket &= \underbrace{n} \underbrace{\llbracket \langle t_1, \dots, t_m \rangle \rrbracket}_{m - 1} \underbrace{m}_{f} \\ \llbracket \langle \rangle \rrbracket &= \underbrace{n}_{\bullet} \\ \llbracket \langle t_1, \dots, t_m \rangle \rrbracket &= \underbrace{n} \underbrace{\llbracket \langle t_1, \dots, t_m \rangle \rrbracket}_{m - 1} \underbrace{m}_{F} \\ \llbracket T \rrbracket &= \underbrace{n}_{\bullet} \\ \llbracket t_1 &= t_2 \rrbracket &= \underbrace{n} \underbrace{\llbracket \langle t_1, t_2 \rangle \rrbracket}_{\bullet} \\ \bullet \end{aligned}$$

$$\llbracket \phi \land \psi \rrbracket = \underbrace{\begin{smallmatrix} n \\ \llbracket \psi \rrbracket} \qquad FreeVar(\phi) = FreeVar(\psi) \subseteq \{x_1, \dots, x_n\}$$

$$\llbracket \exists x_{n+1}. \phi \rrbracket = \underbrace{\stackrel{n}{\underset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset$$

Terms and formulae in $CB_{\Sigma,\mathbb{P}}$

Interpretation of terms and formulae, where $Var(t_j) \subseteq \{x_1, \ldots, x_n\}$:

Example

 $\llbracket \exists x_2. \left(P(x_2, x_1) \land f(x_1) = x_2 \right) \rrbracket = \underbrace{f}_{\bullet \bullet}$

Let \mathbb{B} be a cartesian bicategory and $X, Y \in \mathbb{B}$. The poset $\text{Hom}_{\mathbb{B}}(X, Y)$ has a top element given by $\underline{\times} \bullet$ $\bullet^{\underline{Y}}$ and the meet of $R, S \colon X \to Y$ is:

Let \mathbb{B} be a cartesian bicategory and $X, Y \in \mathbb{B}$. The poset $\text{Hom}_{\mathbb{B}}(X, Y)$ has a top element given by $\underline{\times} \bullet$ $\bullet_{\underline{Y}}$ and the meet of $R, S \colon X \to Y$ is:

$$\begin{array}{ccc} \mathbb{B}^{\operatorname{op}} & \xrightarrow{\operatorname{Hom}_{\mathbb{B}}(-,I)} & \operatorname{Set} \\ Y & \longmapsto & \operatorname{Hom}_{\mathbb{B}}(Y,I) \\ R^{\uparrow} & & \downarrow_{-\circ R} \\ X & \longmapsto & \operatorname{Hom}_{\mathbb{B}}(X,I) \end{array}$$

Let \mathbb{B} be a cartesian bicategory and $X, Y \in \mathbb{B}$. The poset $\text{Hom}_{\mathbb{B}}(X, Y)$ has a top element given by $\underline{\times} \bullet$ $\bullet_{\underline{Y}}$ and the meet of $R, S \colon X \to Y$ is:

$$(\operatorname{Map} \mathbb{B})^{\operatorname{op}} \xrightarrow{\operatorname{Hom}_{\mathbb{B}}(-,I)} \operatorname{InfSL}$$

$$Y \longmapsto \operatorname{Hom}_{\mathbb{B}}(Y,I)$$

$$\stackrel{R\uparrow}{\longrightarrow} \qquad \qquad \downarrow_{-\circ R}$$

$$X \longmapsto \operatorname{Hom}_{\mathbb{B}}(X,I)$$

Let \mathbb{B} be a cartesian bicategory and $X, Y \in \mathbb{B}$. The poset $\text{Hom}_{\mathbb{B}}(X, Y)$ has a top element given by $\underline{x} \bullet \underline{Y}$ and the meet of $R, S \colon X \to Y$ is:

$$(\operatorname{Map} \mathbb{B})^{\operatorname{op}} \xrightarrow{\operatorname{Hom}_{\mathbb{B}}(-,I)} \operatorname{InfSL}$$

$$Y \longmapsto \operatorname{Hom}_{\mathbb{B}}(Y,I)$$

$$\stackrel{R\uparrow}{\longrightarrow} \qquad \qquad \downarrow^{-\circ R}$$

$$X \longmapsto \operatorname{Hom}_{\mathbb{B}}(X,I)$$

 $\mathcal{R}(\mathbb{B}) = \operatorname{Hom}_{\mathbb{B}}(-, I)$: $(\operatorname{Map} \mathbb{B})^{\operatorname{op}} \to \operatorname{InfSL}$ is an elementary existential doctrine where, for $\pi \colon X \otimes A \to A$ projection:

$$\delta_{A}^{\mathcal{R}(\mathbb{B})} = \underbrace{}_{A} \bullet \in \operatorname{Hom}_{\mathbb{B}}(A \otimes A, I) \qquad \exists_{\pi}(X \land R) = \underbrace{}_{A}^{X} \land R$$

• -

If $P \colon \mathbb{C}^{op} \to \mathsf{InfSL}$ is an EED, then the category \mathscr{A}_P is a CBC, where:

- Objects: those of C.
- Morphisms $X \to Y$: elements of $P(X \times Y)$.
- Composition of $f \in \text{Hom}_{\mathscr{A}_{P}}(X, Y) = P(X \times Y)$ and $g \in \text{Hom}_{\mathscr{A}_{P}}(Y, Z) = P(Y \times Z)$:

⁴Maietti and Rosolini, "Unifying Exact Completions", 2015.

An adjunction

$$\begin{cases} \mathcal{L}(P) = \mathscr{A}_P \\ \mathcal{R}(\mathbb{B}) = \mathsf{Hom}_{\mathbb{B}}(-, I) \colon (\mathsf{Map}\,\mathbb{B})^{\mathsf{op}} \to \mathsf{InfSL} \end{cases}$$

An adjunction

 ${\mathcal L}$ is not faithful. Consider $\Sigma_1=\{f\},$ $\Sigma_2=\{g_1,g_2\}$ and the two doctrines:

$$\mathsf{L}_{\Sigma_1}^{\mathrm{op}} \xrightarrow{LT} \mathsf{InfSL} \quad \mathsf{and} \quad \mathsf{L}_{\Sigma_2}^{\mathrm{op}} \xrightarrow{Q^{\mathrm{op}}} \mathsf{L}_{\Sigma_1}^{\mathrm{op}} \xrightarrow{LT} \mathsf{InfSL}$$
where $Q(n) = n$ and $Q(g_1) = f = Q(g_2)$.

An adjunction

 ${\mathcal L}$ is not faithful. Consider $\Sigma_1=\{f\},$ $\Sigma_2=\{g_1,g_2\}$ and the two doctrines:

 $\mathcal{L}(\textit{LT}) = \mathcal{L}(\textit{LT} \circ \textit{Q}^{op})$ but they are not isomorphic as doctrines.

A Fox theorem for regular logic

To have an equivalence, we need the unit $\eta_P \colon P \to \mathcal{RL}(P)$ to be a natural isomorphism.

$$\mathcal{RL}(P) = \mathsf{Hom}_{\mathscr{A}_P}(-, I) = P(- imes I) \colon \mathsf{Map}(\mathscr{A}_P)^{\mathsf{op}} o \mathsf{InfSL} \,.$$

Hence we need that $\mathbb{C} \cong Map(\mathscr{A}_P)$. This happens if and only if:

- 1. P has comprehensive diagonals,
- 2. P satisfies the axiom of unique choice.⁵

⁵Maietti, Pasquali, and Rosolini, "Triposes, exact completions, and Hilbert's ε-operator", 2017.

A Fox theorem for regular logic

To have an equivalence, we need the unit $\eta_P \colon P \to \mathcal{RL}(P)$ to be a natural isomorphism.

$$\mathcal{RL}(P) = \operatorname{\mathsf{Hom}}_{\mathscr{A}_P}(-, I) = P(- imes I) \colon \operatorname{\mathsf{Map}}(\mathscr{A}_P)^{\operatorname{\mathsf{op}}} o \operatorname{\mathsf{InfSL}}.$$

Hence we need that $\mathbb{C} \cong Map(\mathscr{A}_P)$. This happens if and only if:

- 1. P has comprehensive diagonals,
- 2. P satisfies the axiom of unique choice.⁵

Proposition

Let \mathbb{B} be a cartesian bicategory. Then $\mathcal{R}(\mathbb{B})$ satisfies (1) and (2).

⁵Maietti, Pasquali, and Rosolini, "Triposes, exact completions, and Hilbert's ε -operator", 2017.