On Doctrines and Cartesian Bicategories

Filippo Bonchi, Alessio Santamaria, Jens Seeber,Paweł Sobociński

CALCO, $2^{\text {nd }}$ September 2021
Salzburg, Austria

Fox's theorem for cartesian categories ${ }^{1}$

A symmetric monoidal category (\mathbb{C}, \otimes, I) is cartesian if and only if every object X is equipped with morphisms

$$
\xrightarrow[x]{ }: X \rightarrow X \otimes X \text { and } \quad x_{\bullet}: X \rightarrow I \text { such that }
$$

2. For all $f: X \rightarrow Y$:

$$
x{ }^{Y}
$$

3. The choice of comonoid on every object is coherent with the monoidal structure in the sense that

$$
\underline{X \otimes Y}=\frac{X}{Y}
$$

[^0]
Lawvere theories for terms

Let $\mathcal{L}=(\Sigma, \mathbb{P})$ and \mathcal{T} be a theory in regular logic with equality. The Lawvere Theory generated by Σ is a category L_{Σ}.

- Objects: natural numbers.
- Morphisms $n \rightarrow m$: tuples $\left\langle t_{1}, \ldots, t_{m}\right\rangle$ where $\operatorname{Var}\left(t_{i}\right) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$.
- Composition: for $n \xrightarrow{\left\langle t_{1}, \ldots, t_{m}\right\rangle} m \xrightarrow{\left\langle s_{1}, \ldots, s_{1}\right\rangle}$ I

$$
\left\langle s_{1}, \ldots, s_{l}\right\rangle \circ\left\langle t_{1}, \ldots t_{m}\right\rangle=\left\langle s_{1}\left[\vec{t}_{i} / \vec{x}_{i}\right], \ldots, s_{l}\left[\vec{t}_{i} / \vec{x}_{i}\right]\right\rangle
$$

Lawvere theories for terms

Let $\mathcal{L}=(\Sigma, \mathbb{P})$ and \mathcal{T} be a theory in regular logic with equality. The Lawvere Theory generated by Σ is a category L_{Σ}.

- Objects: natural numbers.
- Morphisms $n \rightarrow m$: tuples $\left\langle t_{1}, \ldots, t_{m}\right\rangle$ where $\operatorname{Var}\left(t_{i}\right) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$.
- Composition: for $n \xrightarrow{\left\langle t_{1}, \ldots, t_{m}\right\rangle} m \xrightarrow{\left\langle s_{1}, \ldots, s_{1}\right\rangle}$ I

$$
\left\langle s_{1}, \ldots, s_{l}\right\rangle \circ\left\langle t_{1}, \ldots t_{m}\right\rangle=\left\langle s_{1}\left[\vec{t}_{i} / \vec{x}_{i}\right], \ldots, s_{l}\left[\vec{t}_{i} / \vec{x}_{i}\right]\right\rangle
$$

L_{Σ} is cartesian: $n \times m=n+m$ with projections

The Lindenbaum-Tarski doctrine

For $n \in \mathbb{N}$ define
$L T(n)=\left\{[\phi] \mid \phi\right.$ formula in \mathcal{L} with free variables in $\left.\left\{x_{1}, \ldots, x_{n}\right\}\right\}$
where $[\phi]=\left[\phi^{\prime}\right]$ if and only if $\phi \dashv \vdash \phi^{\prime}$ in the theory \mathcal{T}. Set $[\phi] \leq[\psi]$ if and only if $\phi \vdash \psi$ in \mathcal{T}.

The Lindenbaum-Tarski doctrine

For $n \in \mathbb{N}$ define
$L T(n)=\left\{[\phi] \mid \phi\right.$ formula in \mathcal{L} with free variables in $\left.\left\{x_{1}, \ldots, x_{n}\right\}\right\}$ where $[\phi]=\left[\phi^{\prime}\right]$ if and only if $\phi \dashv \vdash \phi^{\prime}$ in the theory \mathcal{T}. Set $[\phi] \leq[\psi]$ if and only if $\phi \vdash \psi$ in \mathcal{T}.

$$
\begin{aligned}
\mathrm{L}_{\Sigma}^{\mathrm{op}} & \stackrel{L T}{ } \operatorname{lnfSL} \\
m & \longmapsto L T(m) \\
\left.\left\langle t_{1}, \ldots, t_{m}\right\rangle\right|^{2} & \begin{array}{r}
\mid \cdot\left[\vec{i}_{i} / \vec{x}_{i}\right]
\end{array} \\
n & \longmapsto L T(n)
\end{aligned}
$$

The Lindenbaum-Tarski doctrine

For $n \in \mathbb{N}$ define
$L T(n)=\left\{[\phi] \mid \phi\right.$ formula in \mathcal{L} with free variables in $\left.\left\{x_{1}, \ldots, x_{n}\right\}\right\}$ where $[\phi]=\left[\phi^{\prime}\right]$ if and only if $\phi \dashv \vdash \phi^{\prime}$ in the theory \mathcal{T}. Set $[\phi] \leq[\psi]$ if and only if $\phi \vdash \psi$ in \mathcal{T}.

Notice: for $\pi_{1}=\left\langle x_{1}, \ldots, x_{n}\right\rangle: n+m \rightarrow n$ in L_{Σ},
$L T\left(\pi_{1}\right): L T(n) \rightarrow L T(n+m)$ has a left adjoint $\exists_{\pi_{1}}: L T(n+m) \rightarrow L T(n)$

$$
\exists_{\pi_{1}}(\phi)=\exists x_{m} \ldots \exists x_{n+1} \cdot \phi
$$

Elementary existential doctrines

An elementary existential doctrine ${ }^{2}$ is a functor $P: \mathbb{C}^{\mathrm{OP}} \rightarrow \operatorname{InfSL}$, with \mathbb{C} cartesian, such that

- for all $A \in \mathbb{C}$ there is an element $\delta_{A} \in P(A \times A)$ satisfying certain adjoint conditions,
- for all $\pi: X \times A \rightarrow A$ projection, P_{π} has a left adjoint $\exists_{\pi}: P(X \times A) \rightarrow P(A)$ satisfying certain conditions.

[^1]
Elementary existential doctrines

An elementary existential doctrine ${ }^{2}$ is a functor $P: \mathbb{C}^{\mathrm{OP}} \rightarrow \operatorname{InfSL}$, with \mathbb{C} cartesian, such that

- for all $A \in \mathbb{C}$ there is an element $\delta_{A} \in P(A \times A)$ satisfying certain adjoint conditions,
- for all $\pi: X \times A \rightarrow A$ projection, P_{π} has a left adjoint $\exists_{\pi}: P(X \times A) \rightarrow P(A)$ satisfying certain conditions.

Example

Powerset $\mathcal{P}:$ Set $^{\text {op }} \rightarrow \operatorname{InfSL}$. For $f: X \rightarrow Y, Z \in \mathcal{P}(Y)$:

$$
\mathcal{P}(f)(Z)=\{x \in X \mid f(x) \in Z\} \in \mathcal{P}(X)
$$

- $\delta_{A}=\{(a, a) \mid a \in A\} \in \mathcal{P}(A \times A)$
- For $\pi: X \times A \rightarrow A$ projection:

$$
\begin{aligned}
\mathcal{P}(X \times A) \longrightarrow & \exists_{\pi} \\
& \mathcal{P}(A) \\
S & \{a \in A \mid \exists x \in X .(x, a) \in S\}
\end{aligned}
$$

[^2]
Cartesian bicategories

A cartesian bicategory ${ }^{3}$ is a Poset-enriched, symmetric monoidal category (\mathbb{B}, \otimes, I) where every object $X \in \mathbb{B}$ is equipped with morphisms

$$
\underset{x}{x}: X \rightarrow X \otimes X \text { and } \quad x_{\bullet}: X \rightarrow I \quad \text { such that }
$$

1. x and x - form a cocommutative comonoid
2. x and x ค have right adjoints \because and $\bullet x$ that is

3. The Frobenius law holds:

4. For $R: X \rightarrow Y: \underset{R}{R} \cdot \underbrace{x}_{x} \leq x \cdot \sqrt{R} \sqrt{R} \quad x \sqrt{r} \cdot \leq x_{\bullet}$
5. The choice of comonoid is coherent with the monoidal structure.
[^3]
The cartesian bicategory generated by a regular theory

$\mathrm{CB}_{\Sigma, \mathbb{P}}$: the free cartesian bicategory whose objects are natural numbers and generators for morphisms are given by the following rules:

$$
\frac{f \in \Sigma \quad \operatorname{ar}(f)=n}{n-f-n \rightarrow 1} \Sigma \quad \frac{P \in \mathbb{P} \quad \text { ar }(P)=n}{n \sqrt[n]{P}: n \rightarrow 0} \mathbb{P}
$$

where we require that:

Terms and formulae in $\mathrm{CB}_{\Sigma, \mathrm{P}}$

Interpretation of terms and formulae, where $\operatorname{Var}\left(t_{j}\right) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$:

$$
\begin{aligned}
& \llbracket x_{i} \rrbracket=\frac{\frac{1}{i \vdots}}{n!} \\
& \llbracket f\left\langle t_{1}, \ldots, t_{m}\right\rangle \rrbracket=n \llbracket \llbracket\left(t_{1}, \ldots, t_{m}\right\rangle \rrbracket{ }^{m} \llbracket- \\
& \llbracket\left\rangle \rrbracket={ }^{n} \bullet\right. \\
& \llbracket\left\langle t_{1}, \ldots, t_{m}\right\rangle \rrbracket=n \cdot \sqrt{\llbracket\left\lfloor t_{1} \rrbracket\right.} \sqrt{\left.\llbracket t_{2}, \ldots, t_{m}\right\rangle \rrbracket}{ }^{m-1} \\
& \llbracket\urcorner \rrbracket=n^{n} \bullet \quad \llbracket P\left\langle t_{1}, \ldots, t_{m}\right\rangle \rrbracket=\sqrt[n]{\left.\llbracket t_{1}, \ldots, t_{m}\right) \rrbracket} m \\
& \left.\llbracket t_{1}=t_{2} \rrbracket=n \llbracket \llbracket t_{1}, t_{2}\right\rangle \rrbracket \square \bullet \\
& \llbracket \phi \wedge \psi \rrbracket=n \cdot \frac{\llbracket[\phi \rrbracket]}{\llbracket[\psi \rrbracket} \quad \operatorname{FreeVar}(\phi)=\operatorname{FreeVar}(\psi) \subseteq\left\{x_{1}, \ldots, x_{n}\right\} \\
& \llbracket \exists x_{n+1} \cdot \phi \rrbracket=\frac{1}{n}: \llbracket \downarrow \square \quad \operatorname{FreeVar}(\phi) \subseteq\left\{x_{1}, \ldots, x_{n+1}\right\}
\end{aligned}
$$

Terms and formulae in $\mathrm{CB}_{\Sigma, \mathrm{P}}$

Interpretation of terms and formulae, where $\operatorname{Var}\left(t_{j}\right) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$:

$$
\begin{aligned}
& \llbracket x_{i} \rrbracket=\frac{\frac{1}{i \vdots}}{n_{n} \vdots} \\
& \left.\llbracket f\left\langle t_{1}, \ldots, t_{m}\right\rangle \rrbracket=\underline{n} \llbracket\left\langle t_{1}, \ldots, t_{m}\right\rangle\right]^{m} f- \\
& \llbracket\left\langle\rrbracket={ }^{n} \bullet\right.
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket\urcorner \rrbracket=n^{n} \bullet \quad \llbracket P\left\langle t_{1}, \ldots, t_{m}\right\rangle \rrbracket=\sqrt[n]{\llbracket\left(t_{1}, \ldots, t_{m}\right\rangle \rrbracket}{ }^{m} \square P \\
& \llbracket t_{1}=t_{2} \rrbracket=\frac{n}{\llbracket\left(t_{1}, t_{2}\right\rangle \rrbracket} \bullet \bullet
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \exists x_{n+1} \cdot \phi \rrbracket=\frac{1}{n!}\left[\llbracket \phi \rrbracket \quad \operatorname{FreeVar}(\phi) \subseteq\left\{x_{1}, \ldots, x_{n+1}\right\}\right.
\end{aligned}
$$

Example

$$
\llbracket \exists x_{2} \cdot\left(P\left(x_{2}, x_{1}\right) \wedge f\left(x_{1}\right)=x_{2}\right) \rrbracket=
$$

From cartesian bicategories to doctrines

Lemma

Let \mathbb{B} be a cartesian bicategory and $X, Y \in \mathbb{B}$. The poset $\operatorname{Hom}_{\mathbb{B}}(X, Y)$ has a top element given by $\xrightarrow{ } \bullet \bullet$ and the meet of $R, S: X \rightarrow Y$ is:

From cartesian bicategories to doctrines

Lemma

Let \mathbb{B} be a cartesian bicategory and $X, Y \in \mathbb{B}$. The poset $\operatorname{Hom}_{\mathbb{B}}(X, Y)$ has a top element given by $\xrightarrow{ } \bullet$ •Y and the meet of $R, S: X \rightarrow Y$ is:

$\mathbb{B}^{\text {op }} \xrightarrow{\mathrm{Hom}_{\mathbb{B}}(-, I)}$ Set

From cartesian bicategories to doctrines

Lemma

Let \mathbb{B} be a cartesian bicategory and $X, Y \in \mathbb{B}$. The poset $\operatorname{Hom}_{\mathbb{B}}(X, Y)$ has a top element given by $\xrightarrow{ } \bullet$ •Y and the meet of $R, S: X \rightarrow Y$ is:

$(\text { Map } \mathbb{B})^{\text {op }} \xrightarrow{\operatorname{Hom}_{\mathbb{B}}(-, I)} \operatorname{InfSL}$

From cartesian bicategories to doctrines

Lemma

Let \mathbb{B} be a cartesian bicategory and $X, Y \in \mathbb{B}$. The poset $\operatorname{Hom}_{\mathbb{B}}(X, Y)$ has a top element given by $\xrightarrow{ } \bullet \bullet$ and the meet of $R, S: X \rightarrow Y$ is:

$(\mathrm{Map} \mathbb{B})^{\mathrm{op}} \xrightarrow{\mathrm{Hom}_{\mathbb{B}}(-, I)} \operatorname{InfSL}$

$\mathcal{R}(\mathbb{B})=\operatorname{Hom}_{\mathbb{B}}(-, I):(\operatorname{Map} \mathbb{B})^{\mathrm{op}} \rightarrow \operatorname{InfSL}$ is an elementary existential doctrine where, for $\pi: X \otimes A \rightarrow A$ projection:

$$
\delta_{A}^{\mathcal{R}(\mathbb{B})}=\Im^{A} \bullet \in \operatorname{Hom}_{\mathbb{B}}(A \otimes A, I) \quad \exists_{\pi}\left(\frac{X}{A}-R\right)=\frac{X}{A}
$$

From doctrines to cartesian bicategories ${ }^{4}$

If $P: \mathbb{C}^{\text {op }} \rightarrow \operatorname{InfSL}$ is an EED, then the category \mathscr{A}_{P} is a CBC, where:

- Objects: those of \mathbb{C}.
- Morphisms $X \rightarrow Y$: elements of $P(X \times Y)$.
- Composition of $f \in \operatorname{Hom}_{\mathscr{A}_{P}}(X, Y)=P(X \times Y)$ and $g \in \operatorname{Hom}_{\mathscr{A}_{p}}(Y, Z)=P(Y \times Z)$:

[^4]
An adjunction

An adjunction

\mathcal{L} is not faithful. Consider $\Sigma_{1}=\{f\}, \Sigma_{2}=\left\{g_{1}, g_{2}\right\}$ and the two doctrines:

$$
\mathrm{L}_{\Sigma_{1}}^{\text {op }} \xrightarrow{L T} \operatorname{lnfSL} \quad \text { and } \quad \mathrm{L}_{\Sigma_{2}}^{\text {op }} \xrightarrow{Q^{\text {op }}} \mathrm{L}_{\Sigma_{1}}^{\text {op }} \xrightarrow{L T} \operatorname{lnfSL}
$$

where $Q(n)=n$ and $Q\left(g_{1}\right)=f=Q\left(g_{2}\right)$.

An adjunction

\mathcal{L} is not faithful. Consider $\Sigma_{1}=\{f\}, \Sigma_{2}=\left\{g_{1}, g_{2}\right\}$ and the two doctrines:

$$
\mathrm{L}_{\Sigma_{1}}^{\text {op }} \xrightarrow{L T} \operatorname{lnfSL} \quad \text { and } \quad \mathrm{L}_{\Sigma_{2}}^{\text {op }} \xrightarrow{Q^{\text {op }}} \mathrm{L}_{\Sigma_{1}}^{\text {op }} \xrightarrow{L T} \operatorname{lnfSL}
$$

where $Q(n)=n$ and $Q\left(g_{1}\right)=f=Q\left(g_{2}\right)$. Then:

$\mathcal{L}(L T)=\mathcal{L}\left(L T \circ Q^{\circ p}\right)$ but they are not isomorphic as doctrines.

A Fox theorem for regular logic

To have an equivalence, we need the unit $\eta_{P}: P \rightarrow \mathcal{R} \mathcal{L}(P)$ to be a natural isomorphism.

$$
\mathcal{R} \mathcal{L}(P)=\operatorname{Hom}_{\mathscr{A}_{P}(}(-, I)=P(-\times I): \operatorname{Map}\left(\mathscr{A}_{P}\right)^{\mathrm{Op}} \rightarrow \operatorname{InfSL} .
$$

Hence we need that $\mathbb{C} \cong \operatorname{Map}\left(\mathscr{A}_{P}\right)$. This happens if and only if:

1. P has comprehensive diagonals,
2. P satisfies the axiom of unique choice. ${ }^{5}$
[^5]
A Fox theorem for regular logic

To have an equivalence, we need the unit $\eta_{P}: P \rightarrow \mathcal{R} \mathcal{L}(P)$ to be a natural isomorphism.

$$
\mathcal{R} \mathcal{L}(P)=\operatorname{Hom}_{\mathscr{A}_{P}(}(-, I)=P(-\times I): \operatorname{Map}\left(\mathscr{A}_{P}\right)^{\mathrm{Op}} \rightarrow \operatorname{InfSL} .
$$

Hence we need that $\mathbb{C} \cong \operatorname{Map}\left(\mathscr{A}_{P}\right)$. This happens if and only if:

1. P has comprehensive diagonals,
2. P satisfies the axiom of unique choice. ${ }^{5}$

Proposition

Let \mathbb{B} be a cartesian bicategory. Then $\mathcal{R}(\mathbb{B})$ satisfies (1) and (2).

The adjunction EED

CBC restricts to an equivalence when

EED is replaced with its subcategory EED of doctrines satisfying (1), (2).

[^6]
[^0]: ${ }^{1}$ Fox, "Coalgebras and cartesian categories", 1976.

[^1]: ${ }^{2}$ Maietti and Rosolini, "Quotient Completion for the Foundation of Constructive Mathematics", 2013.

[^2]: ${ }^{\mathbf{2}}$ Maietti and Rosolini, "Quotient Completion for the Foundation of Constructive Mathematics", 2013.

[^3]: ${ }^{3}$ Carboni and Walters, "Cartesian Bicategories I", 1987.

[^4]: ${ }^{4}$ Maietti and Rosolini, "Unifying Exact Completions", 2015.

[^5]: ${ }^{\mathbf{5}}$ Maietti, Pasquali, and Rosolini, "Triposes, exact completions, and Hilbert's ε-operator", 2017.

[^6]: ${ }^{5}$ Maietti, Pasquali, and Rosolini, "Triposes, exact completions, and Hilbert's ε-operator", 2017.

