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Fox’s theorem for cartesian categories1

A symmetric monoidal category (C,⊗, I ) is cartesian if and only if every
object X is equipped with morphisms

X : X → X ⊗ X and X : X → I such that

1. X =
X X = X X X= X=

2. For all f : X → Y : f

Y

X
f

f

=

Y

Y

X

Y

=f XYX

3. The choice of comonoid on every object is coherent with the monoidal
structure in the sense that

X
=

Y
X⊗Y

X

Y

=

X

X

Y

Y

X⊗Y

1Fox, “Coalgebras and cartesian categories”, 1976.



Lawvere theories for terms

Let L = (Σ,P) and T be a theory in regular logic with equality.
The Lawvere Theory generated by Σ is a category LΣ.

Objects: natural numbers.
Morphisms n → m: tuples ⟨t1, . . . , tm⟩ where Var(ti ) ⊆ {x1, . . . , xn}.

Composition: for n m l
⟨t1,...,tm⟩ ⟨s1,...,sl ⟩

⟨s1, . . . , sl⟩ ◦ ⟨t1, . . . tm⟩ = ⟨s1[t⃗i/x⃗i ], . . . , sl [t⃗i/x⃗i ]⟩

LΣ is cartesian: n ×m = n +m with projections

n +m

n m

⟨x1,...xn⟩ ⟨xn+1,...,xm⟩
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The Lindenbaum-Tarski doctrine

For n ∈ N define

LT (n) = {[ϕ] | ϕ formula in L with free variables in {x1, . . . , xn} }

where [ϕ] = [ϕ′] if and only if ϕ ⊣⊢ ϕ′ in the theory T .
Set [ϕ] ≤ [ψ] if and only if ϕ ⊢ ψ in T .

LopΣ InfSL

m LT (m)

n LT (n)

LT

·[t⃗i/x⃗i ]⟨t1,...,tm⟩

Notice: for π1 = ⟨x1, . . . , xn⟩ : n +m → n in LΣ,
LT (π1) : LT (n) → LT (n +m) has a left adjoint ∃π1 : LT (n +m) → LT (n)

∃π1(ϕ) = ∃xm . . . ∃xn+1. ϕ
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Elementary existential doctrines

An elementary existential doctrine2 is a functor P : Cop → InfSL, with C
cartesian, such that

for all A ∈ C there is an element δA ∈ P(A× A) satisfying certain
adjoint conditions,
for all π : X × A → A projection, Pπ has a left adjoint
∃π : P(X × A) → P(A) satisfying certain conditions.

Example
Powerset P : Setop → InfSL. For f : X → Y , Z ∈ P(Y ):

P(f )(Z ) = {x ∈ X | f (x) ∈ Z} ∈ P(X ).

δA = {(a, a) | a ∈ A} ∈ P(A× A)

For π : X × A → A projection:

P(X × A) P(A)

S {a ∈ A | ∃x ∈ X . (x , a) ∈ S}

∃π

2Maietti and Rosolini, “Quotient Completion for the Foundation of Constructive Mathematics”, 2013.
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Cartesian bicategories

A cartesian bicategory3 is a Poset-enriched, symmetric monoidal category
(B,⊗, I ) where every object X ∈ B is equipped with morphisms

X : X → X ⊗ X and X : X → I such that

1. X and X form a cocommutative comonoid

2. X and X have right adjoints X and X that is

X

≤X X ≤
X

X

X≤X X X ≤

3. The Frobenius law holds:
X

X

X

X

X ==

4. For R : X → Y : R

Y

X
R

R

≤
Y

Y

X

Y

≤R XYX

5. The choice of comonoid is coherent with the monoidal structure.
3Carboni and Walters, “Cartesian Bicategories I”, 1987.



The cartesian bicategory generated by a regular theory

CBΣ,P: the free cartesian bicategory whose objects are natural numbers
and generators for morphisms are given by the following rules:

f ∈ Σ ar(f ) = n
Σ

fn : n → 1

P ∈ P ar(P) = n
P

Pn : n → 0

where we require that:

f n
f

f

=n =f nn



Terms and formulae in CBΣ,P

Interpretation of terms and formulae, where Var(tj) ⊆ {x1, . . . , xn}:

JxiK =
......

1
i
n

Jf ⟨t1, . . . , tm⟩K = J⟨t1, . . . , tm⟩Kn m f

J⟨⟩K = n J⟨t1, . . . , tm⟩K =
Jt1K

J⟨t2, . . . , tm⟩K
n

m − 1

J⊤K = n JP⟨t1, . . . , tm⟩K = J⟨t1, . . . , tm⟩Kn m P

Jt1 = t2K = J⟨t1, t2⟩Kn

Jϕ ∧ ψK =
JϕK

JψK
n FreeVar(ϕ) = FreeVar(ψ) ⊆ {x1, . . . , xn}

J∃xn+1. ϕK = JϕK
1
n

... FreeVar(ϕ) ⊆ {x1, . . . , xn+1}

Example

q
∃x2.

(
P(x2, x1) ∧ f (x1) = x2

)y
=

f

P
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From cartesian bicategories to doctrines

Lemma

Let B be a cartesian bicategory and X ,Y ∈ B. The poset HomB(X ,Y ) has
a top element given by X Y and the meet of R, S : X → Y is:

R

S

R(B) = HomB(−, I ) : (MapB)op → InfSL is an elementary existential
doctrine where, for π : X ⊗ A → A projection:

δ
R(B)
A = A ∈ HomB(A⊗ A, I ) ∃π(

X
R

A

) =
X

R
A
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From doctrines to cartesian bicategories4

If P : Cop → InfSL is an EED, then the category AP is a CBC, where:
Objects: those of C.
Morphisms X → Y : elements of P(X × Y ).
Composition of f ∈ HomAP

(X ,Y ) = P(X × Y ) and
g ∈ HomAP

(Y ,Z ) = P(Y × Z ):

g ◦ f = ∃πY
(PπZ

(f ) ∧ PπX
(g))

X × Y × Z

X × Y X × Z Y × Z

πZ πY
πX

4Maietti and Rosolini, “Unifying Exact Completions”, 2015.



An adjunction

EED CBC

L

⊥

R

{
L(P) = AP

R(B) = HomB(−, I ) : (MapB)op → InfSL

L is not faithful. Consider Σ1 = {f }, Σ2 = {g1, g2} and the two doctrines:

LopΣ1
InfSLLT and LopΣ2

LopΣ1
InfSLQop LT

where Q(n) = n and Q(g1) = f = Q(g2). Then:

LopΣ2
InfSL

m LT (m)

n LT (n)

LT◦Qop

·[ ⃗Q(ti )/x⃗i ]⟨t1,...,tm⟩

L(LT ) = L(LT ◦ Qop) but they are not isomorphic as doctrines.
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A Fox theorem for regular logic

To have an equivalence, we need the unit ηP : P → RL(P) to be a natural
isomorphism.

RL(P) = HomAP
(−, I ) = P(−× I ) : Map(AP)

op → InfSL .

Hence we need that C ∼= Map (AP). This happens if and only if:
1. P has comprehensive diagonals,
2. P satisfies the axiom of unique choice.5

Proposition
Let B be a cartesian bicategory. Then R(B) satisfies (1) and (2).

The adjunction EED CBC

L

⊥

R

restricts to an equivalence when

EED is replaced with its subcategory EED of doctrines satisfying (1), (2).

5Maietti, Pasquali, and Rosolini, “Triposes, exact completions, and Hilbert’s ε-operator”, 2017.
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