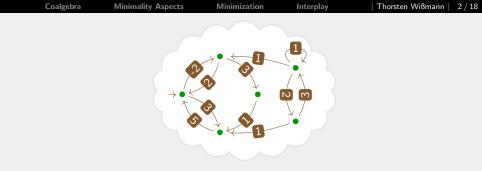
Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann	1 / 18

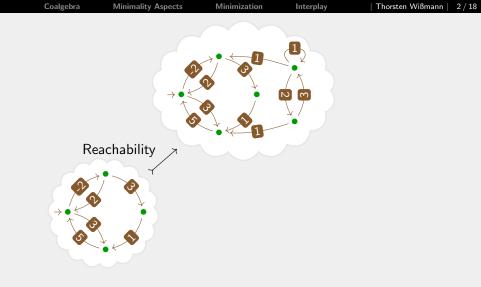
Minimality Notions via Factorization Systems (Calco Pearl)

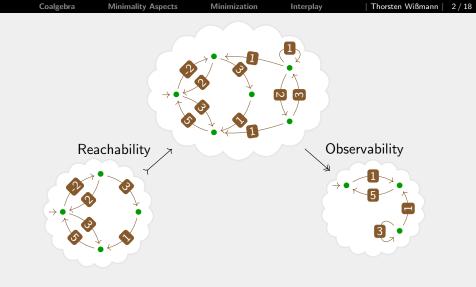
Thorsten Wißmann

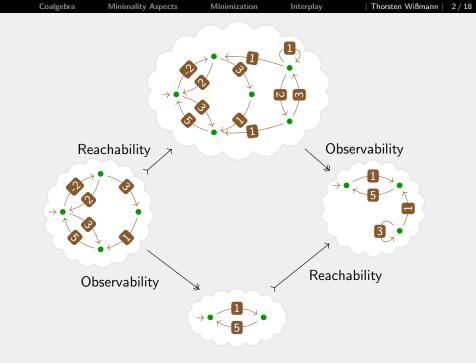
Radboud University, Nijmegen, the Netherlands

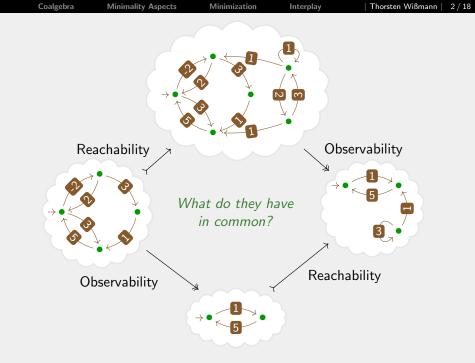
Calco 2021 September 2, 2021

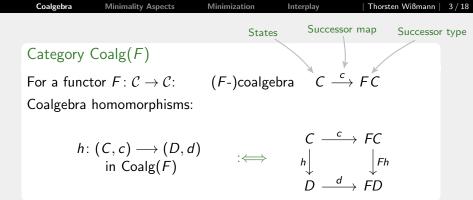


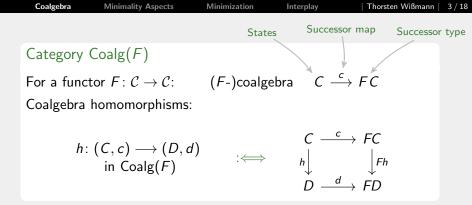








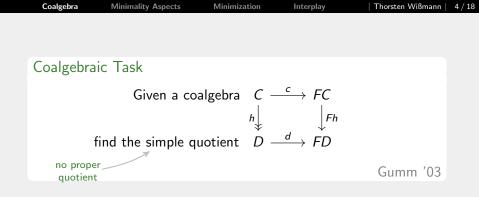


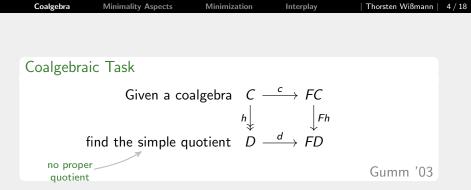


Examples

From now on: C = Set. Coalgebras for functors $F : Set \rightarrow Set$:

- $FX = 2 \times X^A$ deterministic automata (without initial state)
- $FX = \mathcal{P}X$ transition systems
- $FX = \mathbb{R}^{(X)}$ weighted systems (negative weights!)





Examples

This task for specific *F*-coalgebras:

- $FX = 2 \times X^A \rightsquigarrow$ quotient by: language equivalence
- $FX = \mathcal{P}X \rightsquigarrow$ quotient by: (strong) bisimilarity
- $FX = \mathbb{R}^{(X)} \rightsquigarrow$ quotient by: weighted bisimilarity

Category $\operatorname{Coalg}_{I}(F)$ for $I \in \operatorname{Set}$

- *I*-pointed *F*-coalgebra (C, c, i_C) $I \xrightarrow{i_C} C \xrightarrow{c} FC$
- Homomorphism:

$$(C, c, i_{C}) \qquad \qquad I \xrightarrow{i_{C}} C \xrightarrow{c} FC \\ \downarrow_{h} \qquad \text{in } \operatorname{Coalg}_{I}(F) \iff I \xrightarrow{i_{D}} h \downarrow \qquad \qquad \downarrow_{Fh} \text{ in } C \\ (D, d, i_{D}) \qquad \qquad D \xrightarrow{d} FD$$

Category $\operatorname{Coalg}_{I}(F)$ for $I \in \operatorname{Set}$

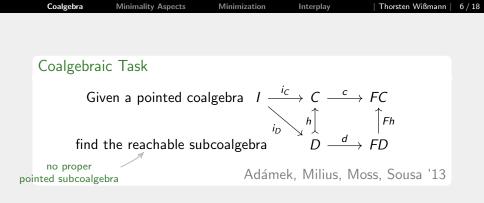
- *I*-pointed *F*-coalgebra (C, c, i_C) $I \xrightarrow{i_C} C \xrightarrow{c} FC$
- Homomorphism:

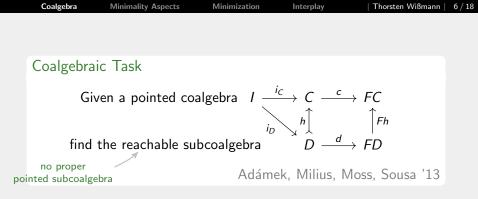
$$(C, c, i_{C}) \qquad \qquad I \xrightarrow{i_{C}} C \xrightarrow{c} FC \\ \downarrow_{h} \qquad \text{in } \operatorname{Coalg}_{I}(F) \iff I \xrightarrow{i_{D}} h \downarrow \qquad \qquad \downarrow_{Fh} \text{ in } C \\ (D, d, i_{D}) \qquad \qquad D \xrightarrow{d} FD$$

Examples

Coalgebras for Set-functors $F \colon Set \to Set$ and $I = 1 = \{*\}$:

- $FX = 2 \times X^A$ deterministic automata incl. initial state
- $FX = \mathcal{P}X$ pointed graphs / transition systems
- $FX = \mathbb{R}^{(X)}$ pointed weighted systems

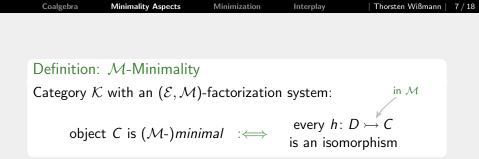


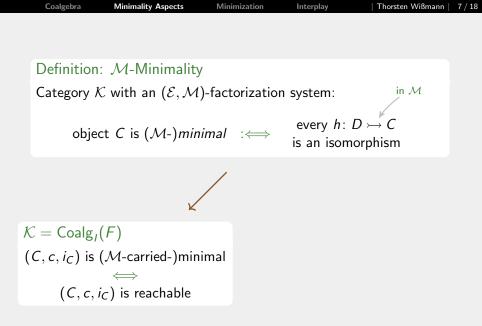


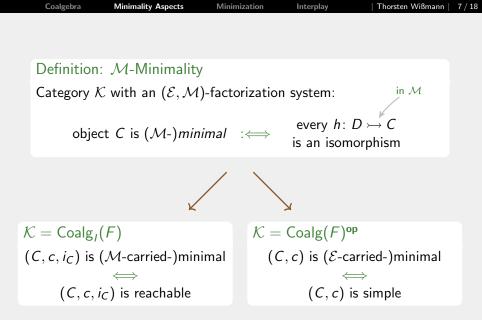
Examples

This task for specific *F*-coalgebras:

- $FX = 2 \times X^A \rightsquigarrow$ restrict to: reachable states
- $FX = \mathcal{P}X \rightsquigarrow$ restrict to: reachable states
- $FX = \mathbb{R}^{(X)} \rightsquigarrow$ restrict to: reachable states







Definition: $(\mathcal{E}, \mathcal{M})$ -factorization system in \mathcal{K}

 ${\small {\sf Classes of Morphisms:}}\qquad\rightarrowtail\quad {\scriptstyle \mathcal{M}}\qquad\twoheadrightarrow\quad {\scriptstyle \mathcal{E}}$

each closed under composition with isomorphisms

CoalgebraMinimality AspectsMinimizationInterplayThorsten Wißmann8/18Definition: $(\mathcal{E}, \mathcal{M})$ -factorization system in \mathcal{K} Classes of Morphisms: $\rightarrow \mathcal{M} \rightarrow \mathcal{E}$

 $\mathsf{each}\xspace$ under composition with isomorphisms

• Factorization of every $f: A \rightarrow B$

$$\overbrace{A \xrightarrow{e} \operatorname{Im}(f) \xrightarrow{m} B}^{f}$$

Coalgebra Minimality Aspects Thorsten Wißmann Minimization Interplay 8 / 18 Definition: $(\mathcal{E}, \mathcal{M})$ -factorization system in \mathcal{K} $\mathsf{Classes} \text{ of Morphisms:} \qquad \rightarrowtail \quad \mathcal{M} \qquad \twoheadrightarrow \quad \mathcal{E}$ each closed under composition with isomorphisms • Factorization of every $f: A \rightarrow B$ • Diagonal fill-in: $A \xrightarrow{e} B$ $\overbrace{A \xrightarrow{e} \operatorname{Im}(f) \xrightarrow{m} B}^{i}$ $f \downarrow \underset{\substack{\swarrow \\ \psi \\ m \end{pmatrix}}{\exists ! d} \downarrow g$

Minimality Aspects Thorsten Wißmann Coalgebra Minimization Interplay 8 / 18 Definition: $(\mathcal{E}, \mathcal{M})$ -factorization system in \mathcal{K} Classes of Morphisms: $\rightarrowtail \mathcal{M} \twoheadrightarrow \mathcal{E}$ each closed under composition with isomorphisms • Factorization of every $f: A \rightarrow B$ • Diagonal fill-in: $\begin{array}{c} A \xrightarrow{e} B \\ f \downarrow \qquad \exists ! d \qquad \downarrow^{g} \\ C \xrightarrow{\nvDash} m \qquad D \end{array}$ $\overbrace{A \xrightarrow{e} \operatorname{Im}(f) \xrightarrow{m} B}^{:}$ Example:

 $\mathcal{K} = \mathsf{Set}$ $\mathcal{E} = \mathsf{surjective\ maps}$ $\mathcal{M} = \mathsf{injective\ maps}$

Thorsten Wißmann Coalgebra Minimality Aspects Minimization Interplay 8 / 18 Definition: $(\mathcal{E}, \mathcal{M})$ -factorization system in \mathcal{K} Classes of Morphisms: $\rightarrow \mathcal{M}$ $\twoheadrightarrow \mathcal{E}$ each closed under composition with isomorphisms • Factorization of every $f: A \rightarrow B$ Diagonal fill-in: $\begin{array}{c} A \xrightarrow{e} B \\ f \downarrow \qquad \exists ! d \qquad \downarrow^{g} \\ C \xrightarrow{\ltimes} m \qquad D \end{array}$ $A \xrightarrow{e} \operatorname{Im}(f) \xrightarrow{m} B$ Example:

 $\mathcal{K} = \mathsf{Set}$ $\mathcal{E} = \mathsf{surjective\ maps}$ $\mathcal{M} = \mathsf{injective\ maps}$

Example:

 $(\mathcal{E},\mathcal{M})\text{-factorization} \\ \text{system in } \mathcal{K} \qquad \Leftarrow$

 $\iff \begin{array}{c} (\mathcal{M}, \mathcal{E}) \text{-factorization} \\ \text{system in } \mathcal{K}^{op} \end{array}$

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann 9 / 18
Theorem				

Theorem

 $(\mathcal{E}, \mathcal{M})$ -factorization system in \mathcal{C} lifts to an $(\mathcal{E}$ -carried, \mathcal{M} -carried)-factorization system in:

• Coalg(F) if $F : C \to C$ preserves M

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann 9 / 18

Theorem

 $(\mathcal{E}, \mathcal{M})$ -factorization system in \mathcal{C} lifts to an $(\mathcal{E}$ -carried, \mathcal{M} -carried)-factorization system in:

- Coalg(F) if $F : C \to C$ preserves \mathcal{M}
- Alg(F) if $F : C \to C$ preserves \mathcal{E}
- \bullet Eilenberg-Moore category of ${\mathcal T}$ if ${\mathcal T}\colon {\mathcal C}\to {\mathcal C}$ preserves ${\mathcal E}$

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann 9	/ 18
Theorem					

Theorem

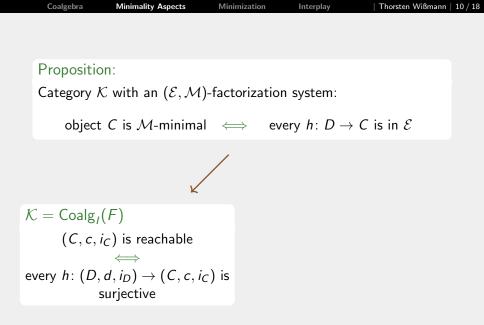
 $(\mathcal{E}, \mathcal{M})$ -factorization system in \mathcal{C} lifts to an $(\mathcal{E}$ -carried, \mathcal{M} -carried)-factorization system in:

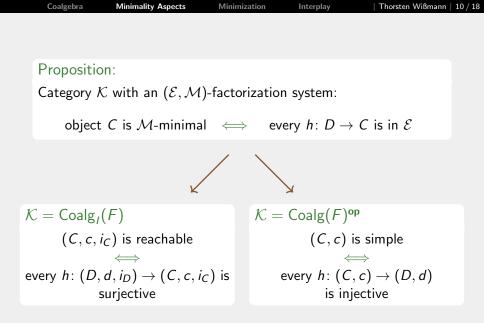
- Coalg(F) if $F : C \to C$ preserves M
- Alg(F) if $F : C \to C$ preserves \mathcal{E}
- Eilenberg-Moore category of T if $T: \mathcal{C} \to \mathcal{C}$ preserves \mathcal{E}

If $\mathcal{C} = \mathsf{Set}$, $(\mathcal{E}, \mathcal{M}) = (\mathsf{Epi}, \mathsf{Mono})$

- mono-preservation of F is wlog for coalgebras
- all Set-functors preserve epimorphisms

Coalgebra	Minimality	Aspects	Minimization	Interplay	Thorsten Wißmann	10 / 18
Propositio	n:					
		$(C \Lambda A)$	Contoni-ot	ion austana.		
Category A	, with an	$(\mathcal{C},\mathcal{M})$ -	actorizat	ion system:		
	$c \cdot \mathbf{M}$				· · c	
object	C is \mathcal{M} -	minimal	\iff	every $h: D \to C$	is in E	





Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißman	n 11 / 18
Minimality	Notions				
$\mathcal M$ -min	imality of X	ε	'-minimality of J	X	
⇔ever	$_{Y} Y ightarrow X$ is an i	so ¢	\Rightarrow every $X \twoheadrightarrow Y$	is an iso	
⇔ever	$\gamma \; Y o X$ is in ${\mathcal E}$	¢	\Rightarrow every $X \rightarrow Y$	is in ${\cal M}$	

Coalgebra Minimality Aspects	Minimization Interplay Thorsten Wißmann 1
Minimality Notions	
\mathcal{M} -minimality of X	\mathcal{E} -minimality of X
\Leftrightarrow every $Y \rightarrowtail X$ is an iso	$\Leftrightarrow \text{ every } X \twoheadrightarrow Y \text{ is an iso}$
\Leftrightarrow every $Y o X$ is in ${\mathcal E}$	\Leftrightarrow every $X \to Y$ is in \mathcal{M}
if $\mathcal{E} = Epi$ & \mathcal{K} has equalizers: \Leftrightarrow all parallel $X \rightrightarrows Y$ equa	if $\mathcal{M} = Mono$ & \mathcal{K} has coequalizers: al \Leftrightarrow all parallel $Y \rightrightarrows X$ equal \Leftrightarrow 'X subterminal'

Coalgebra Minimality Aspects M	linimization Interplay Thorsten Wi
linimality Notions	
\mathcal{M} -minimality of X	\mathcal{E} -minimality of X
\Leftrightarrow every $Y \rightarrowtail X$ is an iso	$\Leftrightarrow \text{every } X \twoheadrightarrow Y \text{ is an iso}$
\Leftrightarrow every $Y o X$ is in $\mathcal E$	\Leftrightarrow every $X \to Y$ is in \mathcal{M}
if $\mathcal{E} = Epi$ & \mathcal{K} has equalizers: \Leftrightarrow all parallel $X \rightrightarrows Y$ equal	if $\mathcal{M} = Mono$ & \mathcal{K} has coequalizers: \Leftrightarrow all parallel $Y \rightrightarrows X$ equal \Leftrightarrow 'X subterminal'

Coalg(F)

- If $F: \mathcal{C} \to \mathcal{C}$ preserves weak kernel pairs..
 - monomorphisms in Coalg(F) = Mono-carried homomorphisms
 - simple coalgebras = subterminal coalgebras

Coalgebra	Minimality Aspects	Minimizat	ion Interplay	Thorsten Wißmann 12 / 18
-				
Definition:				
$Category\ \mathcal{K}$	with an $(\mathcal{E},\mathcal{M})$)-factoriz	ation system:	
			$m: D \rightarrow C$	
\mathcal{M} -m	<i>inimization</i> of (C =	where D is \mathcal{M} -mi	

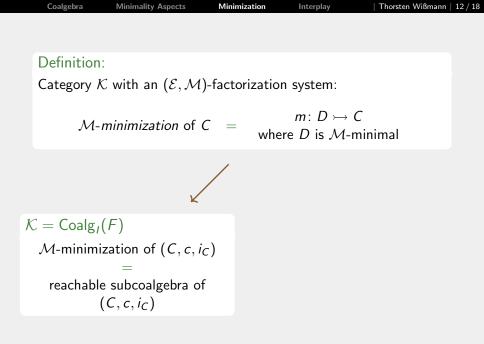
Minimation

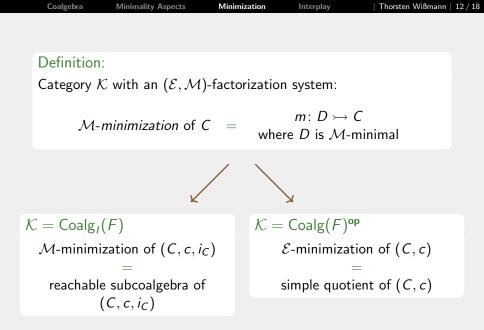
N / I ..

۸

10 / 10

TL





Proposition: \mathcal{M} -minimizations ...

- \bullet are unique (up to iso) ~ if ${\cal K}$ has pullbacks of ${\cal M}\mbox{-morphisms}$
- $\label{eq:main_state} \bullet \mbox{ exist } \mbox{ if \mathcal{K} has wide pullbacks of \mathcal{M}-morphisms, $\mathcal{M} \subseteq $Mono, $$ and \mathcal{K} is \mathcal{M}-wellpowered }$

- \bullet are unique (up to iso) if ${\cal K}$ has pullbacks of ${\cal M}\text{-morphisms}$
- $\label{eq:main_state} \bullet \mbox{ exist } \mbox{ if \mathcal{K} has wide pullbacks of \mathcal{M}-morphisms, $\mathcal{M} \subseteq $Mono,$ and \mathcal{K} is \mathcal{M}-wellpowered }$

$\mathcal{K} = \operatorname{Coalg}_{I}(F)$

reachable subcoalgebras ...

- are unique (up to iso) if F preserves finite intersections
- exist if *F* preserves infinite intersections

Adámek, Milius, Moss, Sousa '13

Coalgebra	Minimality Aspe	ects Mini	mizat	ion	Interplay		Thorste	n Wißmann	13 / 18
Propositio	n: $\mathcal M$ -min	imizations	5						
• are unique (up to iso) if $\mathcal K$ has pullbacks of $\mathcal M$ -morphisms									
• exist if \mathcal{K} has wide pullbacks of \mathcal{M} -morphisms, $\mathcal{M} \subseteq$ Mono, and \mathcal{K} is \mathcal{M} -wellpowered									
					ı				
$\mathcal{K} = Coalg_I($	(F)	F: Set		$\mathcal{K} = 0$	Coalg(<i>F</i>	-)op		F: Set	
reachable sub	ocoalgebras			simple	quotier	nts			
	. (.) ட				. (`	

- are unique (up to iso) if F preserves finite intersections
- exist if *F* preserves infinite intersections

Adámek, Milius, Moss, Sousa '13

- are unique (up to iso)
- exist

Gumm '08

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann 14 / 18
Assume: Λ	arLambda is a class of m	onos and all	$\mathcal M$ -minimiz	ations exist
Propositio	n:			

- If pullbacks along $\mathcal M\text{-morphisms}$ exist in $\mathcal K,$ then
 - $\bullet~\mathcal{M}\text{-minimal}$ objects form a coreflective subcategory $\mathcal{K}_{\text{min}} \hookrightarrow \mathcal{K}$
 - \mathcal{M} -minimization is the coreflector $\mathcal{K} \to \mathcal{K}_{min}$ (\Rightarrow functorial)
 - $\bullet~\mathcal{M}\text{-minimal}$ objects are closed under $\mathcal{E}\text{-morphisms}$

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann 14 / 18
Assume: $\mathcal N$	1 is a class of m	onos and all	$\mathcal M$ -minimiza	tions exist
Proposition	ו:			

- If pullbacks along $\mathcal M\text{-morphisms}$ exist in $\mathcal K\text{,}$ then
 - $\mathcal M\text{-minimal}$ objects form a coreflective subcategory $\mathcal K_{\text{min}} \hookrightarrow \mathcal K$
 - \mathcal{M} -minimization is the coreflector $\mathcal{K} \to \mathcal{K}_{min}$ (\Rightarrow functorial)
 - \mathcal{M} -minimal objects are closed under \mathcal{E} -morphisms

F: Set

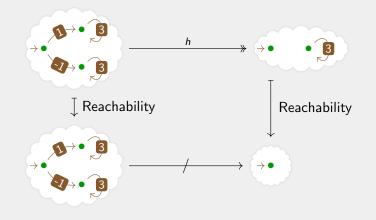
$\mathcal{K} = \operatorname{Coalg}_I(F)$

If F preserves inverse images,

- coreflective subcategory $\operatorname{Coalg}_I^{\operatorname{reach}}(F) \hookrightarrow \operatorname{Coalg}_I(F)$
- reachability is functorial
- reachability closed under quotients

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann	15 / 18
Inverse in	and procession				
	lage preservation				
• FX =	$2 \times X^A$ preserve	s inverse ima	ges		
• <i>FX</i> =	$\mathcal{P}X$ preserves in	verse images			
	$\mathbb{R}^{(X)}$ does not p id $(\mathbb{R},+,0)$ is no		se images, ł	pecause the	

monoid $(\mathbb{R}, +, 0)$ is not positive.



Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann 16 / 18
Assume: $\mathcal N$	1 is a class of m	onos and all	${\cal M}$ -minimiza	ations exist
Proposition	n:			

- If pullbacks along $\mathcal M\text{-morphisms}$ exist in $\mathcal K\text{,}$ then
 - $\mathcal M\text{-minimal}$ objects form a coreflective subcategory $\mathcal K_{\text{min}} \hookrightarrow \mathcal K$
 - \mathcal{M} -minimization is the coreflector $\mathcal{K} \to \mathcal{K}_{min}$ (\Rightarrow functorial)
 - \mathcal{M} -minimal objects are closed under \mathcal{E} -morphisms

F: Set

$\mathcal{K} = \operatorname{Coalg}_{I}(F)$

If F preserves inverse images,

- coreflective subcategory $\operatorname{Coalg}_I^{\operatorname{reach}}(F) \hookrightarrow \operatorname{Coalg}_I(F)$
- reachability is functorial
- reachability closed under quotients

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann 16 / 18
Assume: ${\cal N}$	1 is a class of m	onos and all	$\mathcal M$ -minimizat	ions exist
Proposition	1:			

If pullbacks along $\mathcal M\text{-morphisms}$ exist in $\mathcal K,$ then

- $\mathcal M\text{-minimal}$ objects form a coreflective subcategory $\mathcal K_{\text{min}} \hookrightarrow \mathcal K$
- \mathcal{M} -minimization is the coreflector $\mathcal{K} \to \mathcal{K}_{min}$ (\Rightarrow functorial)
- $\bullet~\mathcal{M}\text{-minimal}$ objects are closed under $\mathcal{E}\text{-morphisms}$

F · Set

$\mathcal{K} = \mathsf{Coalg}_{\mathsf{I}}(\mathsf{F})$

If F preserves inverse images,

- coreflective subcategory $\operatorname{Coalg}_I^{\operatorname{reach}}(F) \hookrightarrow \operatorname{Coalg}_I(F)$
- reachability is functorial
- reachability closed under quotients

 $\mathcal{K} = \mathsf{Coalg}(F)^{\mathsf{op}}$

• Reflective subcategory Coalg^{simple}(F) \hookrightarrow Coalg(F)

F · Set

- Finding the simple quotient is functorial
- Simple closed under subcoalgebras Gumm '08

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann 17 / 18			
•							
Assume:							
\bullet all ${\cal M}\text{-minimizations}$ in ${\cal K}$ and all ${\cal E}\text{-minimizations}$ in ${\cal K}^{op}$ exist							
$ullet$ ${\cal K}$ has	pullbacks along	\mathcal{M}					

 $\bullet \,\, \mathcal{K}$ has pushouts along \mathcal{E}

Proposition

For $C \in \mathcal{K}$, the following yield the same:

- \mathcal{E} -minimization (in \mathcal{K}^{op}) of the \mathcal{M} -minimization of C (in \mathcal{K})
- \mathcal{M} -minimization (in \mathcal{K}) of the \mathcal{E} -minimization of C (in \mathcal{K}^{op})

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann 17 /	18
Assume:					
$ullet$ all $\mathcal M$	-minimizations in	ו ${\cal K}$ and all ${\cal E}$	-minimizatio	ons in \mathcal{K}^{op} exist	
1/ 1					

- ${\cal K}$ has pullbacks along ${\cal M}$
- $\bullet \,\, \mathcal{K}$ has pushouts along \mathcal{E}

Proposition

For $C \in \mathcal{K}$, the following yield the same:

- \mathcal{E} -minimization (in \mathcal{K}^{op}) of the \mathcal{M} -minimization of C (in \mathcal{K})
- \mathcal{M} -minimization (in \mathcal{K}) of the \mathcal{E} -minimization of C (in \mathcal{K}^{op})

$\mathcal{K} = \operatorname{Coalg}_{I}(F)$ F: Set

If F preserves inverse images, then reachability and observability minimization can be performed in any order.

Coalgebra	Minimality Aspects	Minimization	n Interplay	Thorsten Wißman	nn 18 / 1
Minimalit	y Notions				
\mathcal{M} -mii	nimality of X	E	-minimality of	X	
\Leftrightarrow ever	${}_{Y} Y angle X$ is an i	so ¢	\Rightarrow every $X \twoheadrightarrow Y$	∕ is an iso	
\Leftrightarrow ever	ry $Y o X$ is in ${\mathcal E}$	<	\Rightarrow every $X \rightarrow Y$	\prime is in ${\cal M}$	

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorsten Wißmann	18
Minimalit	y Notions				
$\overline{\mathcal{M}}$ -mi	nimality of X	<i>E</i> -m	inimality of	X	
⇔evei	ry $Y \rightarrowtail X$ is an i	so 🔶 e	very $X \rightarrow Y$	í is an iso	
⇔evei	ry $Y o X$ is in ${\mathcal E}$	⇔e	very $X o Y$	\prime is in ${\cal M}$	
	= Epi C has equalizers:		$\mathcal{M} = Mon_{\mathcal{L}}$		

- \Leftrightarrow all parallel X
 ightarrow Y equal
- \Leftrightarrow all parallel $Y \rightrightarrows X$ equal

/ 18

 $\Leftrightarrow `X \ subterminal'$

Coalgebra	Minimality Aspects	Minimization	Interplay	Thorster
Minimalit	y Notions			

 \mathcal{M} -minimality of X

 \Leftrightarrow every $Y \rightarrow X$ is an iso

 \Leftrightarrow every $Y \to X$ is in \mathcal{E}

if $\mathcal{E} = \mathsf{Epi}$ & \mathcal{K} has equalizers: \Leftrightarrow all parallel $X \rightrightarrows Y$ equal \mathcal{E} -minimality of X

$$\Leftrightarrow$$
 every $X \twoheadrightarrow Y$ is an iso

en Wißmann | 18 / 18

 \Leftrightarrow every $X \to Y$ is in \mathcal{M}

 $\text{if }\mathcal{M}=\text{Mono}$

& \mathcal{K} has coequalizers:

 \Leftrightarrow all parallel $Y \rightrightarrows X$ equal

 \Leftrightarrow 'X subterminal'

Minimization Criteria for..

- existence & uniqueness
- functoriality & adjointness $\mathcal{K}_{\min} \hookrightarrow \mathcal{K}$ coreflective

Interplay

For *F*-coalgebras: if *F* preserves inverse images

Coalgebra	Minimality Aspects	Minimization	Interplay	\mid Thorsten Wißmann \mid ∞ / 2	.8
References					
[AMMS13]	Jiří Adámek, S Lurdes Sousa. Methods Co	"Well-pointe	ed Coalgebra	s" In: Log.	
[Gum03]	H. P. Gumm. Anhang über H. P. Gumm Berliner Studi Verlag, 2003.	Universelle . Ed. by Tho	Coalgebra mas Ihringer	von . Vol. 10.	
[Gum08]	H. Peter Gum Applied Cate pp. 313-332. URL: https://doi	egorical Stru	ctures 16.3 7/s10485-0	(June 2008), 007–9116–1.	

Coalgebra Minimality Aspects Minimization Interplay | Thorsten Wißmann | ∞ / 18 Simple Quotient in Coalg₁(F)

Nothing new in $\operatorname{Coalg}_{I}(F)$ for \rightarrow

The forgetful functor

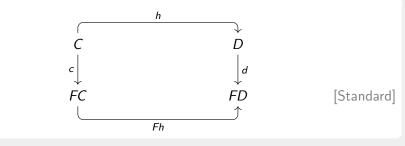
$$\operatorname{Coalg}_{I}(F) \longrightarrow \operatorname{Coalg}(F)$$

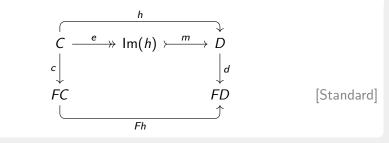
preserves and reflects simple coalgebras and simple quotients.

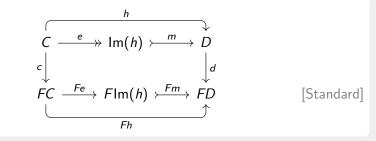
Proof

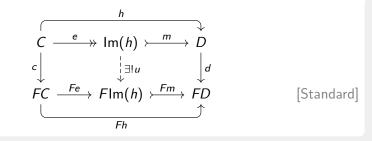
For every pointed coalgebra (C, c, i), we have isomorphic categories:

$$(C, c, i)/\text{Coalg}_{I}(F) \cong (C, c)/\text{Coalg}(F)$$

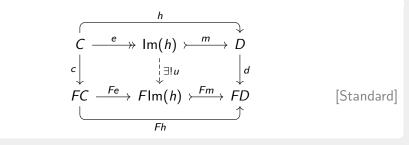








Factorization of a homomorphism $h: (C, c) \rightarrow (D, d)$



 \implies Not enough for a factorization system in Coalg(F)

Coalgebra Minimility Aspects Minimization Interplay | Thorsten Wißmann | ∞ / 18 (\mathcal{E} -carried, \mathcal{M} -carried)-factorization system in Coalg(F)!

Proposition: Diagonal fill-in in Coalg(F), if F preserves \mathcal{M}

$$(A, a) \xrightarrow{e} (B, b)$$

$$f \downarrow \qquad \exists ! u \xrightarrow{f} \downarrow g$$

$$(C, c) \xrightarrow{m} (D, d) \qquad [New]$$

 $(\mathcal{E}\text{-carried}, \mathcal{M}\text{-carried})\text{-factorization system in } Coalg(F)!$

Proposition: Diagonal fill-in in Coalg(F), if F preserves \mathcal{M}

$$(A, a) \xrightarrow{e} (B, b)$$

$$f \downarrow \qquad \exists ! u \qquad \downarrow g$$

$$(C, c) \xrightarrow{m} (D, d) \qquad [New]$$

Proof. Obtain u as the diagonal in C. It is a coalgebra morphism!

 $(\mathcal{E}\text{-carried}, \mathcal{M}\text{-carried})\text{-factorization system in } Coalg(F)!$

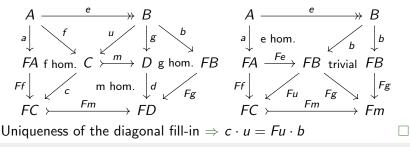
Proposition: Diagonal fill-in in Coalg(F), if F preserves M

$$(A, a) \xrightarrow{e} (B, b)$$

$$f \downarrow \qquad \exists ! u \qquad \downarrow g$$

$$(C, c) \xrightarrow{m} (D, d) \qquad [New]$$

Proof. Obtain u as the diagonal in C. It is a coalgebra morphism!



- Category /c. reachable pointed D-coalger
- (Mor, Iso)-factorization system on ${\cal K}$
- Mor-minimization = tree unravelling

