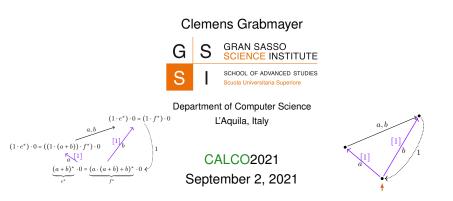
A Coinductive Version of Milner's Proof System for Regular Expressions Modulo Bisimilarity



Process semantics [[·]] p of regular (star) expr's (Milner, 1984)

cMil

 $Mil \Rightarrow cMil$

cMil ⇒ Mil

 $0 \stackrel{P}{\longmapsto} \text{deadlock } \delta, \text{ no termination}$

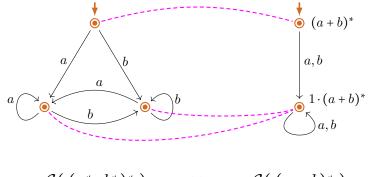
procsem

Mil

- $1 \xrightarrow{P}$ empty process ϵ , then terminate
- $a \xrightarrow{P}$ atomic action a, then terminate
- $e + f \xrightarrow{P}$ alternative composition of $\llbracket e \rrbracket_P$ and $\llbracket f \rrbracket_P$
- $e \cdot f \xrightarrow{P}$ sequential composition of $\llbracket e \rrbracket_P$ and $\llbracket f \rrbracket_P$
 - $e^* \xrightarrow{P}$ unbounded iteration of $\llbracket e \rrbracket_P$, option to terminate
- $$\begin{split} \llbracket e \rrbracket_{\mathcal{P}} &\coloneqq [\mathcal{P}(e)]_{\overleftrightarrow} & \text{(bisimilarity equivalence class of process } \mathcal{P}(e)) \\ &\coloneqq [\mathcal{C}(e)]_{\overleftrightarrow} & \text{(bisimilarity equivalence class of chart } \mathcal{C}(e)) \end{split}$$

			tion (av	I -	- \				
procsem	Mil	question(s)	answer here	LEE	cMil	Mil ⇒ cMil	cMil ⇒ Mil	summ	+

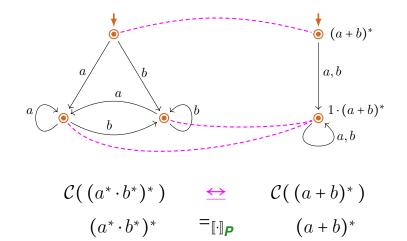
Chart Interpretation (example) (via TSS or Antimirov's partial deriv's)



$$\mathbb{C}((a^* \cdot b^*)^*) \qquad \Longleftrightarrow \qquad \mathbb{C}((a+b)^*) \\ [[(a^* \cdot b^*)^*]]_{\mathbf{P}} = [[(a+b)^*]]_{\mathbf{P}}$$

			tion (av	I -	- \				
procsem	Mil	question(s)	answer here	LEE	cMil	Mil ⇒ cMil	cMil ⇒ Mil	summ	+

Chart Interpretation (example) (via TSS or Antimirov's partial deriv's)



Milner's proof system Mil = Mil⁻ + RSP*

Axioms:

(assoc(+))	(e+f) + g = e + (f+g)	$(id_{I}(\cdot))$	$1 \cdot e = e$
(neutr(+))	e + 0 = e	$(id_{r}(\cdot))$	$e \cdot 1 = e$
(comm(+))	e + f = f + e	(deadlock)	$0 \cdot e = 0$
(idempot(+))	e + e = e	(rec(*))	$e^* = 1 + e \cdot e^*$
$(assoc(\cdot))$	$(e \cdot f) \cdot g = e \cdot (f \cdot g)$	$(trm-body(^*))$	$e^* = (1 + e)^*$
$(r-distr(+, \cdot))$	$(e+f) \cdot g = e \cdot g + f \cdot g$		

Inference rules: equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* (\text{if } f \ddagger)$$

Milner's axiomatization question

Question (Milner, 1984)

question(s)

Mil

Is Milner's system Mil = Mil⁻+RSP* complete for bisimilarity of process interpretations of regular expressions?

$$\forall e, f \text{ reg. expr's } \left(\vdash_{\mathsf{Mil}} e = f \quad \bigotimes_{\text{sound}} e =_{\llbracket \cdot \rrbracket_{P}} f \right)?$$

cMil

 $Mil \Rightarrow cMil$

 $cMil \Rightarrow Mil$

"Yes" for restrictions to subclasses: Zantema/Fokkink (1994), Fokkink (1996), Corradini, De Nicola, Labella (2002), G/Fokkink (2020).

Proposition (G, CMCS 2006)

The system Mil⁻+USP, where: USP: unique solvability of guarded, linear systems of equations, is (sound and) complete.

Question (investigated here)

How can the derivational power be characterized that the fixed-point rule RSP* adds to the purely equational part Mil⁻ of Milner's system?

procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+
Ansv	ver c	develop	ed						

We use:

- the loop existence and elimination property (LEE) of charts
 - implies expressibility by a star expression
 - Ied to completeness result for 1-free star expressions (G/Fokkink, 2020)

We introduce:

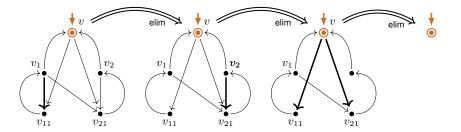
a coinductive version cMil = (Mil⁻+LCoProof) of Mil = (Mil⁻+RSP*) based on LEE-witnessed coinductive proofs over Mil⁻.

We construct/obtain:

- ▶ a proof transformation: Mil → cMil, (RSP* inst's → LCoProof inst's),
- ▶ a proof transformation: Mil ← cMil, (bottom-up extraction procedure),
- theorem equivalence Mil ~ cMil :

 $\vdash_{\mathsf{Mil}} e = f \quad \Longleftrightarrow \quad \vdash_{\mathsf{cMil}} e = f \, .$

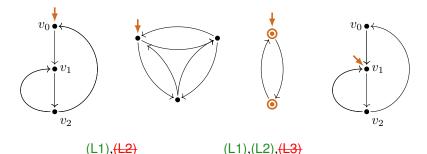
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+
LEE									



procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

Definition

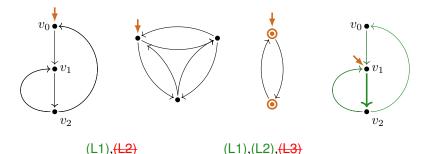
- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Immediate termination is only possible at the start vertex.



procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

Definition

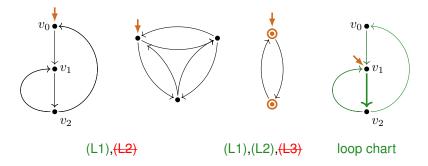
- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Immediate termination is only possible at the start vertex.



procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

Definition

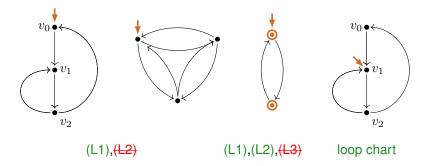
- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Immediate termination is only possible at the start vertex.



procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

Definition

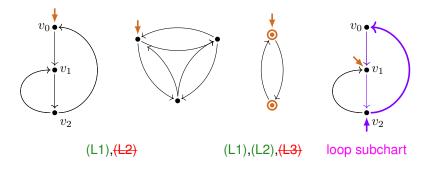
- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Immediate termination is only possible at the start vertex.



procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

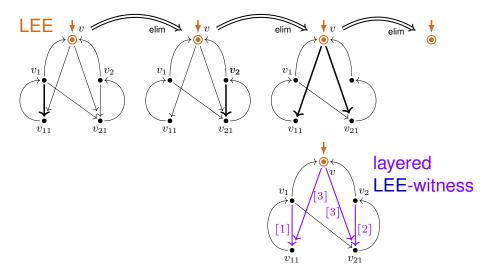
Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Immediate termination is only possible at the start vertex.



procsem	Mil	question(s)	answer here	LEE	CMII	Mil ⇒ cMil	CMil ⇒ Mil	summ	+
L C C	ام مر م		a di kacala di kacala						

LEE, and LLEE-witness

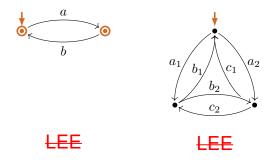


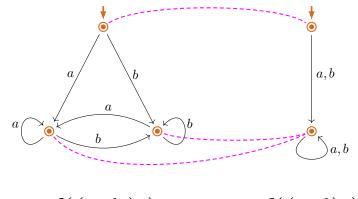
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+
LEE									

Definition

A chart C satisfies LEE (loop existence and elimination) if:

 $\exists \mathcal{C}_0 \left(\mathcal{C} \Longrightarrow_{\text{elim}}^* \mathcal{C}_0 \not\Longrightarrow_{\text{elim}} \right. \\ \land \mathcal{C}_0 \text{ permits no infinite path} \left. \right).$

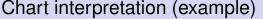


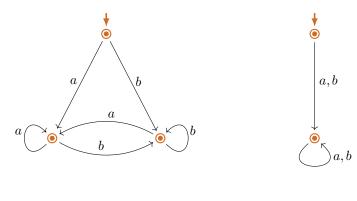


$$\mathcal{C}((a^* \cdot b^*)^*) \quad \Longleftrightarrow \quad \mathcal{C}((a+b)^*)$$
$$\llbracket (a^* \cdot b^*)^* \rrbracket_{\mathbf{P}} = \quad \llbracket (a+b)^* \rrbracket_{\mathbf{P}}$$

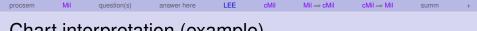
Clemens Grabmayer A Coinductive Version of Milner's Proof System f. Reg. Expr. Mod. Bisimilarity

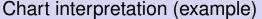
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+
Char	t int	orproto	tion (ov	omol	\sim				

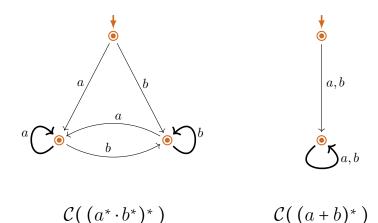




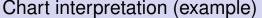
 $\mathcal{C}((a^* \cdot b^*)^*) \qquad \qquad \mathcal{C}((a+b)^*)$

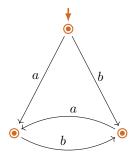






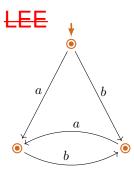
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+
Char	t int	orproto	tion (ov	omol	\sim				

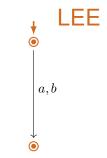




procsem	MII	question(s)	answer here	LEE	CIMII	CIVIII ⇒ MII	summ	+
Char	بلحمان الم		lan (and		-)			

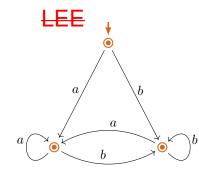
Chart interpretation (example)

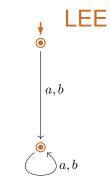




procsem	Mil	question(s)	answer here	LEE	CMII	Mil ⇒ cMil	cMil ⇒ Mil	summ	+
	: т.				-)				

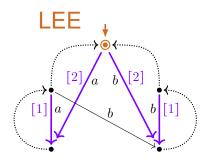
Chart interpretation (example)

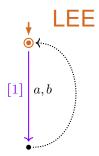




 process
 Mil
 question(s)
 answer here
 LEE
 cMil
 Mil
 summ

 LLEE-1-chart interpretation (example)
 (TERMGRAPH, 2020)

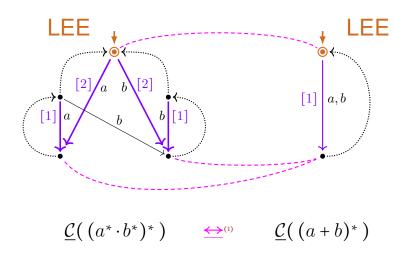




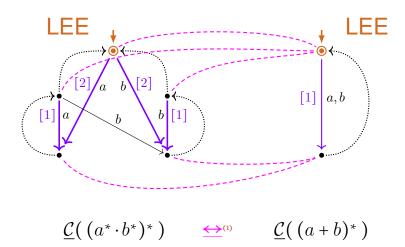
 $\underline{\mathcal{C}}((a^* \cdot b^*)^*) \qquad \underline{\mathcal{C}}((a+b)^*)$

Clemens Grabmayer A Coinductive Version of Milner's Proof System f. Reg. Expr. Mod. Bisimilarity

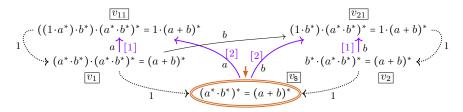
proceem Mil question(s) answer here LEE cMil Mil ⇒ cMil cMil ⇒ Mil summ LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)



proceem Mil question(s) answer here LEE cMil Mil ⇒ cMil cMil → Mil summ LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)

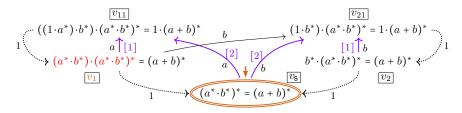


procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



Right- and left-hand sides are Mil-provable solutions in every vertex.

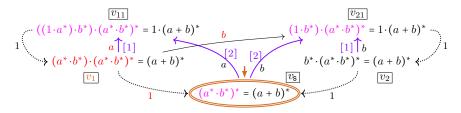
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



Right- and left-hand sides are Mil⁻-provable solutions in every vertex. E.g. in v_1 :

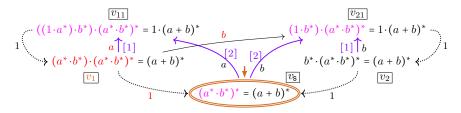
 $(a^* \cdot b^*) \cdot (a^* \cdot b^*)^* =_{\mathsf{Mil}^-}$

procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



Right- and left-hand sides are Mil⁻-provable solutions in every vertex. E.g. in v_1 :

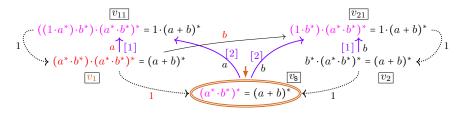
 $(a^* \cdot b^*) \cdot (a^* \cdot b^*)^* =_{\mathsf{Mil}^-}$



Right- and left-hand sides are Mil⁻-provable solutions in every vertex. E.g. in v_1 :

 $(a^* \cdot b^*) \cdot (a^* \cdot b^*)^* =_{\mathsf{Mil}^-}$

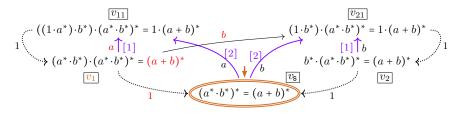
$$=_{\mathsf{MiI}^{-}} 1 \cdot (a^* \cdot b^*)^* + a \cdot (((1 \cdot a^*) \cdot b^*) \cdot (a^* \cdot b^*)^*) + b \cdot ((1 \cdot b^*) \cdot (a^* \cdot b^*)^*)$$



Right- and left-hand sides are Mil⁻-provable solutions in every vertex. E.g. in v_1 :

$$\begin{aligned} (a^* \cdot b^*) \cdot (a^* \cdot b^*)^* &=_{\mathsf{M}\mathsf{H}^-} ((1 + a \cdot a^*) \cdot (1 + b \cdot b^*)) \cdot (a^* \cdot b^*)^* \\ &=_{\mathsf{M}\mathsf{H}^-} (1 \cdot 1 + a \cdot a^* \cdot 1 + 1 \cdot b \cdot b^* + a \cdot a^* \cdot b \cdot b^*) \cdot (a^* \cdot b^*)^* \\ &=_{\mathsf{M}\mathsf{H}^-} (1 + a \cdot a^* + a \cdot a^* \cdot b \cdot b^* + b \cdot b^*) \cdot (a^* \cdot b^*)^* \\ &=_{\mathsf{M}\mathsf{H}^-} (1 + a \cdot a^* \cdot (1 + b \cdot b^*) + b \cdot b^*) \cdot (a^* \cdot b^*)^* \\ &=_{\mathsf{M}\mathsf{H}^-} (1 + a \cdot a^* \cdot b^* + b \cdot b^*) \cdot (a^* \cdot b^*)^* \\ &=_{\mathsf{M}\mathsf{H}^-} 1 \cdot (a^* \cdot b^*)^* + a \cdot (((1 \cdot a^*) \cdot b^*) \cdot (a^* \cdot b^*)^*) + b \cdot ((1 \cdot b^*) \cdot (a^* \cdot b^*)^*) \end{aligned}$$

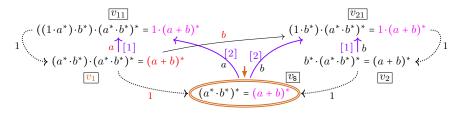
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



Right- and left-hand sides are Mil⁻-provable solutions in every vertex. E.g. in v_1 :

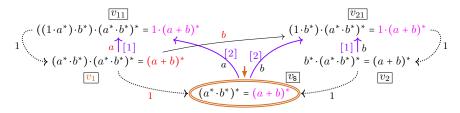
 $(a+b)^* =_{\mathsf{Mil}^-}$

procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



Right- and left-hand sides are Mil⁻-provable solutions in every vertex. E.g. in v_1 :

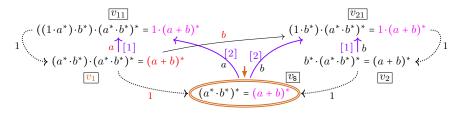
 $(a+b)^* =_{\mathsf{Mil}^-}$



Right- and left-hand sides are Mil⁻-provable solutions in every vertex. E.g. in v_1 :

 $(a+b)^* =_{\mathsf{Mil}^-}$

$$=_{\mathsf{Mil}^{-}} \mathbf{1} \cdot (a+b)^* + \mathbf{a} \cdot (\mathbf{1} \cdot (a+b)^*) + \mathbf{b} \cdot (\mathbf{1} \cdot (a+b)^*)$$



Right- and left-hand sides are Mil⁻-provable solutions in every vertex. E.g. in v_1 :

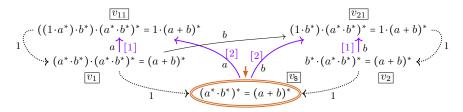
$$(a+b)^* =_{\mathsf{Mil}^-} (a+b)^* + (a+b)^* =_{\mathsf{Mil}^-} 1 + (a+b) \cdot (a+b)^* + 1 + (a+b) \cdot (a+b)^*$$

$$=_{\mathsf{Mil}^-} 1 + 1 + (a+b) \cdot (a+b)^* + a \cdot (a+b)^* + b \cdot (a+b)^*$$

$$=_{\mathsf{Mil}^-} 1 + (a+b) \cdot (a+b)^* + a \cdot (1 \cdot (a+b)^*) + b \cdot (1 \cdot (a+b)^*)$$

$$=_{\mathsf{Mil}^-} 1 \cdot (a+b)^* + a \cdot (1 \cdot (a+b)^*) + b \cdot (1 \cdot (a+b)^*)$$

procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



Right- and left-hand sides are Mil-provable solutions in every vertex.

procsem Mil question(s) answer here LEE cMil Mil ⇒ cMil cMil → Mil summ +

Coinductive proof systems

Rule scheme for combining LEE-witnessed coinductive proofs:

$$\frac{g_1 = h_1 \quad \dots \quad g_n = h_n \quad \mathcal{LCP}(e = f)}{e = f} \text{ LCoProof}_n$$

► LCP(e = f) is a LEE-witnessed coinductive proof of e = f over Mil⁻+{g₁ = h₁,...,g_n = h_n}.

We define the proof systems:

$$\begin{split} &\mathsf{CLC} \coloneqq \mathsf{rules} \; \{\mathsf{LCoProof}_n\}_{n \in \mathbb{N}} \\ &\mathsf{cMil} \coloneqq \mathsf{Mil}^- + \{\mathsf{LCoProof}_n\}_{n \in \mathbb{N}} \end{split}$$

Lemma CLC ~ cMil proceem Mil question(s) answer here LEE cMil Mil \Rightarrow cMil cMil \Rightarrow Mil summ

Coinductive proof systems

Rule scheme for combining coinductive proofs:

$$\frac{g_1 = h_1 \quad \dots \quad g_n = h_n \quad \mathcal{CP}(e = f)}{e = f} \operatorname{CoProof}_n$$

• CP(e = f) is a coinductive proof of e = fover Mil⁻+{ $g_1 = h_1, \ldots, g_n = h_n$ }.

We define the proof systems:

 $\begin{aligned} \mathsf{CLC} &:= \mathsf{rules} \ \{\mathsf{LCoProof}_n\}_{n \in \mathbb{N}} \\ \mathsf{cMil} &:= \mathsf{Mil}^- + \{\mathsf{LCoProof}_n\}_{n \in \mathbb{N}} \end{aligned}$

Lemma CLC ~ cMil $\begin{array}{l} \mathsf{CC} \coloneqq \mathsf{rules} \; \{\mathsf{CoProof}_n\}_{n \in \mathbb{N}} \\ \\ \hline \mathsf{cMil} \coloneqq \mathsf{Mil}^- + \{\mathsf{CoProof}_n\}_{n \in \mathbb{N}} \end{array}$

Lemma

```
(i) CC ~ \overline{\text{cMil}}.
```

(ii)
$$\overline{\text{cMil}} \sim \text{Mil}^++\text{USP}$$
,

(iii) CC and $\overline{\text{cMil}}$ are complete for $=_{\mathbb{I}^{-}\mathbb{I}_{P}}$. proceem Mil question(s) answer here LEE cMil Mil \Rightarrow cMil cMil \Rightarrow Mil summ

Coinductive proof systems

Rule scheme for combining coinductive proofs:

$$\frac{g_1 = h_1 \quad \dots \quad g_n = h_n \quad \mathcal{CP}(e = f)}{e = f} \operatorname{CoProof}_n$$

• CP(e = f) is a coinductive proof of e = fover Mil⁻+{ $g_1 = h_1, \ldots, g_n = h_n$ }.

We define the proof systems:

$$\begin{split} &\mathsf{CLC} \coloneqq \mathsf{rules} \; \{\mathsf{LCoProof}_n\}_{n \in \mathbb{N}} \\ &\mathsf{cMil} \coloneqq \mathsf{Mil}^- + \{\mathsf{LCoProof}_n\}_{n \in \mathbb{N}} \end{split}$$

Lemma CLC ~ cMil Consequence cMil ~ CLC \leq CC ~ \overline{cMil} . $\begin{array}{l} \mathsf{CC} \coloneqq \mathsf{rules} \; \{\mathsf{CoProof}_n\}_{n \in \mathbb{N}} \\ \\ \hline \mathsf{cMil} \coloneqq \mathsf{Mil}^- + \{\mathsf{CoProof}_n\}_{n \in \mathbb{N}} \end{array} \\ \end{array}$

Lemma

```
(i) CC \sim \overline{\text{cMil}}.
```

(ii)
$$\overline{\text{cMil}} \sim \text{Mil}^++\text{USP}$$
,

(iii) CC and $\overline{\text{cMil}}$ are complete for $=_{\|\cdot\|_P}$.

procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

Proof transformation $Mil \mapsto cMil$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^*$$

$$\longrightarrow \frac{e = f \cdot e + g \quad \mathcal{LCP}_{\mathsf{Mil}^- + \{e = f \cdot e + g\}}(e = f^* \cdot g)}{e = f^* \cdot g} \operatorname{LCoProof}_1$$

procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	cMil ⇒ Mil	summ	+
---------	-----	-------------	-------------	-----	------	------------------------	------------	------	---

Proof transformation $Mil \mapsto cMil$

$$\underbrace{\overbrace{(a+b)^{*}}^{e} = \underbrace{(a \cdot a^{*} + b) \cdot b^{*}}_{f^{*}} \cdot \underbrace{(a+b)^{*} + 1}_{g}}_{e} \operatorname{RSP^{*}}_{g}$$

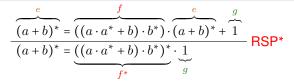
procsem

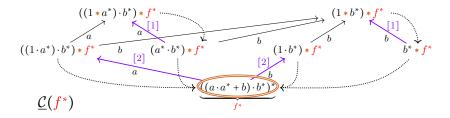
Mil

 $cMil \Rightarrow Mil$

$$\underbrace{\overbrace{(a+b)^{*}}^{e} = \underbrace{\overbrace{(a\cdot a^{*}+b)\cdot b^{*}}^{f} \cdot \underbrace{(a+b)^{*}+1}_{f^{*}}}_{f^{*}} \operatorname{RSP^{*}}_{g}$$

rocsem Mil question(s)



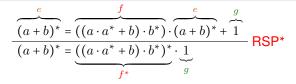


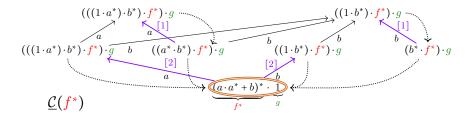
csem Mil question(s) answer here

LEE

cMil

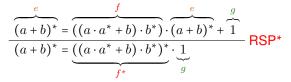
cMil ⇒ Mil

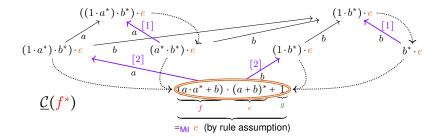




rocsem Mil questio

cMil ⇒ Mil





From fixed-point rule instances to coinductive proofs

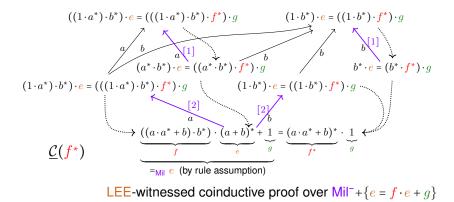
cMil

Mil ⇒ cMil

cMil ⇒ Mil

Mil

$$\frac{\overbrace{(a+b)^*}^e = \overbrace{((a\cdot a^*+b)\cdot b^*)}^f \cdot \overbrace{(a+b)^*}^e + \overbrace{1}^g}{(a+b)^*} \mathsf{RSP}^*$$



Clemens Grabmayer A Coinductive Version of Milner's Proof System f. Reg. Expr. Mod. Bisimilarity

procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

Proof transformation $Mil \mapsto cMil$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^*$$

$$\longrightarrow \frac{e = f \cdot e + g \quad \mathcal{LCP}_{\mathsf{Mil}^- + \{e = f \cdot e + g\}}(e = f^* \cdot g)}{e = f^* \cdot g} \operatorname{LCoProof}_1$$

procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

Proof transformation $Mil \mapsto cMil$

Theorem

Mil ≾ cMil, because:

every derivation in Mil with conclusion e = f can be transformed effectively into a derivation in cMil with conclusion e = f.

Proof idea. $\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^*$ $\longmapsto \qquad \underbrace{e = f \cdot e + g \quad \mathcal{LCP}_{\mathsf{Mil}^- + \{e = f \cdot e + g\}}(e = f^* \cdot g)}_{e = f^* \cdot g} \operatorname{LCoProof}_1$

Corollary Mil ~ cMil ~ CLC.

procsem	IVIII	question(s)	answer here	LCC	CIVIII		Summ	+
_	<i>•</i> •							

Proof transformation $cMil \mapsto Mil$

Lemma

For all star expression e, f, and equations $\Gamma \subseteq =_{Mil}$:

$$e \stackrel{\mathsf{LEE}}{=}_{\mathsf{Mil}^- + \Gamma} f \implies e =_{\mathsf{Mil}} f$$

procsem

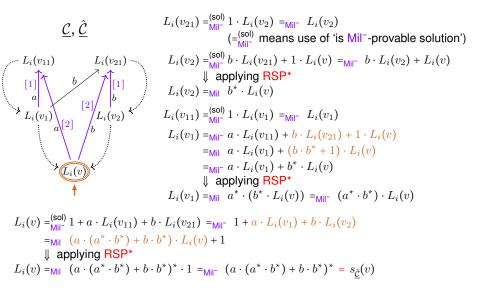
Mil

ere Ll

cMil

 $cMil \Rightarrow Mil$

Extraction of Mil-derivation from LEE-witn. coind. proof



procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

Proof transformation $cMil \mapsto Mil$

Lemma (extraction and unique solvability)

Let \underline{C} be a LEE-1-chart.

- ► From <u>C</u> a Mil⁻-(hence Mil-)provable solution can be extracted.
- ► Any two Mil-provable solutions of <u>C</u> are Mil-provably equal.

Lemma

For all star expression $e,\,f$, and equations $\Gamma\,\subseteq\,{}_{\sf Mil}$:

$$e \stackrel{\mathsf{LEE}}{=}_{\mathsf{Mil}^- + \Gamma} f \implies e =_{\mathsf{Mil}} f$$

Theorem

cMil ≾ Mil, because:

every derivation in cMil with conclusion e = f can be transformed effectively into a derivation in Mil with conclusion e = f.

0	procsem	Mil	question(s)	answer here	LEE	cMil	Mil ⇒ cMil	cMil ⇒ Mil	summ	+
Summary	Sum	mar	y							

We define:

- (LEE-witnessed) coinductive proofs over Mil⁻:
 - ► 1-charts <u>C</u> (with LEE) whose vertices are labeled by equations between the values of two provable solutions of <u>C</u>
- proof systems
 - systems cMil / CLC with LEE-witnessed coind. proofs over Mil⁻
 - systems cMil / CC with coinductive proofs over Mil⁻

Results:

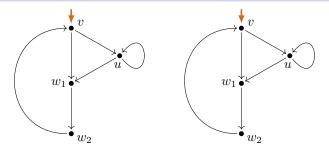
- ► Mil = (Mil⁻+RSP*) ~ (Mil⁻+LCoProof) = cMil ~ CLC
- ► Mil \leq (Mil⁻+USP) ~ (Mil⁻+CoProof) = \overline{cMil} ~ CC ((clearly) complete).

Desired application: proof strategy for completeness proof of Mil

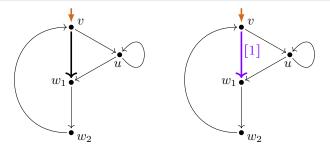
$$\blacktriangleright \vdash_{\mathsf{Mil}} e = f \iff \vdash_{\mathsf{cMil}} e = f \iff e =_{\llbracket \cdot \rrbracket_{\mathsf{P}}} f$$

► Technical report: arXiv:2108.13104

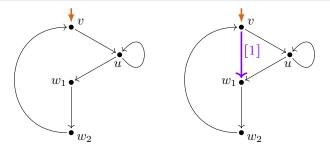
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



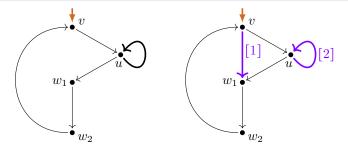
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



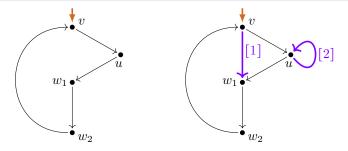
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



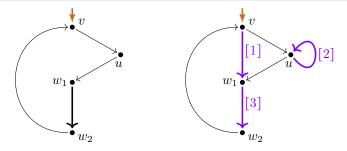
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



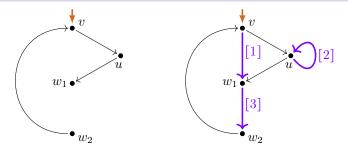
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



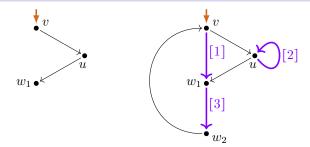
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



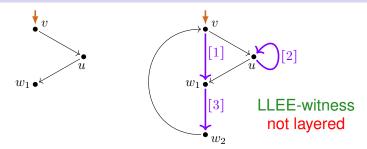
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



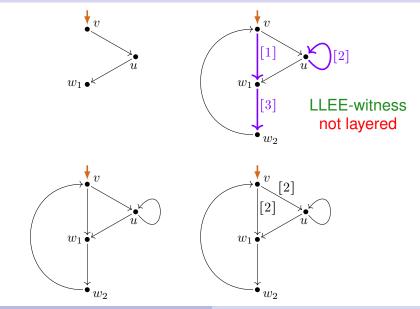
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	cMil ⇒ Mil	summ	+



procsem	Mil	question(s)	answer here	LEE	cMil	Mil ⇒ cMil	cMil ⇒ Mil	summ	+
_									

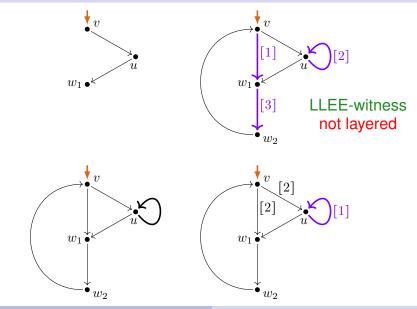


procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

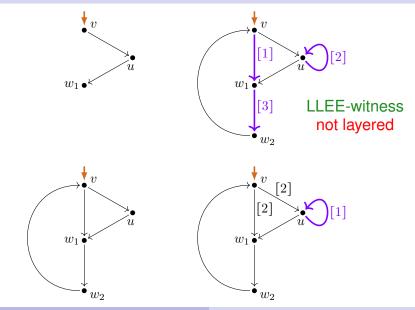


Clemens Grabmayer A Coinductive Version of Milner's Proof System f. Reg. Expr. Mod. Bisimilarity

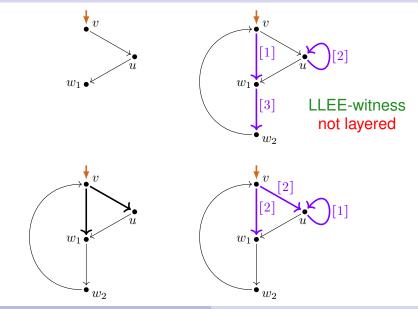
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



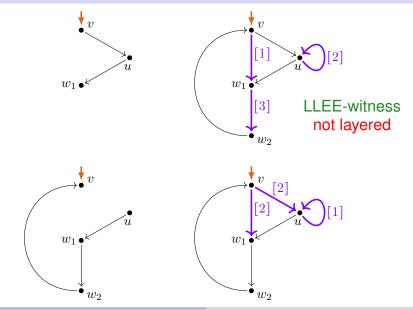
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



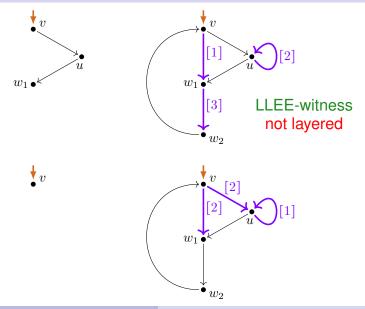
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



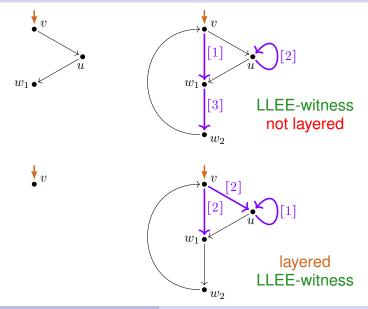
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	$cMil \Rightarrow Mil$	summ	+



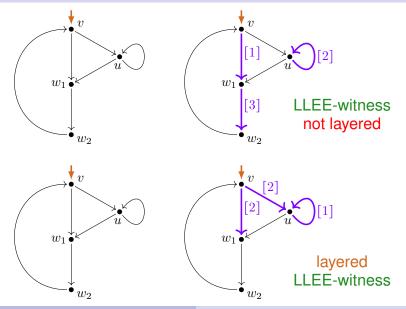
procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	cMil ⇒ Mil	summ	+



procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Rightarrow cMil$	$cMil \Rightarrow Mil$	summ	+

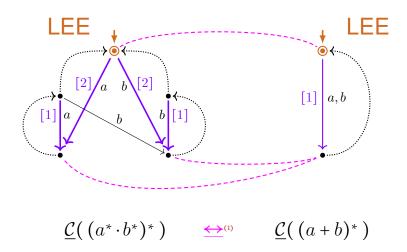


procsem	Mil	question(s)	answer here	LEE	cMil	$Mil \Longrightarrow cMil$	cMil ⇒ Mil	summ	+



Clemens Grabmayer A Coinductive Version of Milner's Proof System f. Reg. Expr. Mod. Bisimilarity

proceem Mil question(s) answer here LEE cMil Mil → cMil × cMil → Mil summ LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)

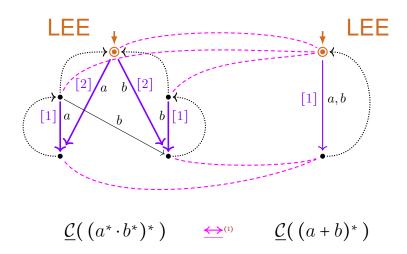


LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)

cMil

Mil

question(s)



 $Mil \rightarrow cMil$

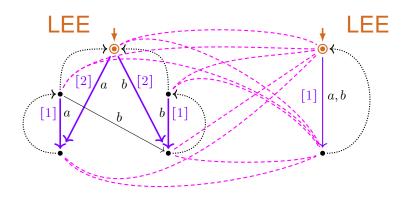
 $cMil \Rightarrow Mil$

LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)

cMil

Mil

question(s)



 $\underline{\mathcal{C}}((a^* \cdot b^*)^*) \qquad \stackrel{\longleftrightarrow^{(1)}}{\longleftrightarrow} \qquad \underline{\mathcal{C}}((a+b)^*)$

 $Mil \rightarrow cMil$

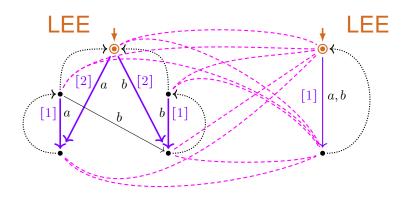
 $cMil \Rightarrow Mil$

LLEE-1-chart interpretation (example) (TERMGRAPH, 2020)

cMil

Mil

question(s)

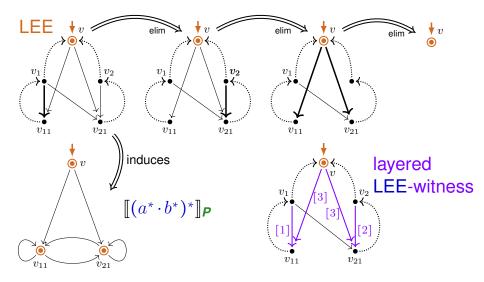


 $\underline{\mathcal{C}}((a^* \cdot b^*)^*) \qquad \stackrel{\longleftrightarrow^{(1)}}{\longleftrightarrow} \qquad \underline{\mathcal{C}}((a+b)^*)$

 $Mil \rightarrow cMil$

 $cMil \Rightarrow Mil$

LEE, and LLEE-witness, induced process graph



cMil

LEE-charts: properties and results

Lemmas

- (I) Chart interpretations of 1-free star expressions satisfy LEE.
- (SU) LEE-charts have unique provable solutions up to Mil-provability.
 - (C) LEE is preserved under bisimulation collapse.

Theorem (G/Fokkink, LICS 2020)

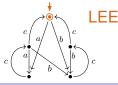
The adaptation BBP of Mil to 1-free star expressions is complete.

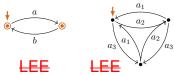
Consequence of lemmas used

(E) A chart $\ensuremath{\mathcal{C}}$ is expressible by a 1-free star expr. modulo bisimilarity

 \iff the bisimulation collapse of \mathcal{C} is a LEE-chart.

Hence expressible | not expressible by 1-free star expressions:





Clemens Grabmayer

A Coinductive Version of Milner's Proof System f. Reg. Expr. Mod. Bisimilarity