
Pushdown Automata and Context-Free
Grammars in Bisimulation Semantics

Jos Baeten Cesare Carissimo Bas Luttik

CWI, Amsterdam

University of Amsterdam

Eindhoven University of Technology

CALCO, 2 September 2021



Well-known theorem

A language can be defined by a pushdown automaton iff it can be
defined by a context-free grammar.

A process can be defined by a pushdown automaton iff it can be
defined by a finite guarded sequential recursive specification, with
a notion of state awareness added.



Well-known theorem

A language can be defined by a pushdown automaton iff it can be
defined by a context-free grammar.

A process can be defined by a pushdown automaton iff it can be
defined by a finite guarded sequential recursive specification, with
a notion of state awareness added.



Definition

A language is a language equivalence class of process graphs.

A process is a bisimulation equivalence class of process graphs.

A process graph is a non-deterministic automaton, possibly infinite.
A process graph is a labelled transition system with an initial state.



Definition

A language is a language equivalence class of process graphs.

A process is a bisimulation equivalence class of process graphs.

A process graph is a non-deterministic automaton, possibly infinite.
A process graph is a labelled transition system with an initial state.



Pushdown Automaton

↑ ↓
a[ε/1]
a[1/11]
b[1/ε]

c[ε/ε]
c[1/1]

b[1/ε]

(↑, ε) (↑, 1) (↑, 11) . . .

(↓, ε) (↓, 1) (↓, 11) . . .

a a a

bbb

bbb

c c c



Context-Free Processes

� Use SOS to give automata for syntax 0,1, a., ;,+

� (Used this to tackle the theorem since CONCUR 2008)

1 ↓ a.p
a−→ p

p
a−→ p′

(p+ q)
a−→ p′

q
a−→ q′

(p+ q)
a−→ q′

p ↓
(p+ q) ↓

q ↓
(p+ q) ↓

p
a−→ p′

p ; q
a−→ p′ ; q

p ↓ q
a−→ q′

p ; q
a−→ q′

p ↓ q ↓
p ; q ↓



Context-Free Processes

� Use SOS to give automata for syntax 0,1, a., ;,+

� (Together with MSc student Astrid Belder)

1 ↓ a.p
a−→ p

p
a−→ p′

(p+ q)
a−→ p′

q
a−→ q′

(p+ q)
a−→ q′

p ↓
(p+ q) ↓

q ↓
(p+ q) ↓

p
a−→ p′

p ; q
a−→ p′ ; q

p ↓ p 6→ q
a−→ q′

p ; q
a−→ q′

p ↓ q ↓
p ; q ↓



The difference

X
def
= a.(X ; Y ) + b.1 Y

def
= c.1+ 1 .

X XY XY 2 XY n−1 XY n

1 Y Y 2 Y n−1 Y n

a a a

b b b b b

ccc

c
c

c

c
c

c



Recursion

p
a−→ p′ (N = p) ∈ E

N
a−→ p′

p ↓ (N = p) ∈ E
N ↓

Limit to finite guarded recursive specifications.
Greibach normal form X = (1+)

∑n
i=1 ai.ξi.



Bisimulation

p↔ q, p is bisimilar to q if there is a symmetric binary relation R
with p R q satisfying the following conditions:

1. whenever s R t and s a−→ s′, there is t′ such that t a−→ t′ and
s′ R t′; and

2. whenever s R t and s↓, then t↓.



Context-free Grammar
A recursive specification for the process of {anbn | n ≥ 0} is

X = 1+ a.Y

Y = b.1+ a.Y ; b.1

A recursive specification for the always accepting stack is

S = 1+
∑
d∈D

push(d).Td ;S

Td = 1+ pop(d).1+
∑
e∈D

push(e).Te ;Td



Context-free Grammar
A recursive specification for the process of {anbn | n ≥ 0} is

X = 1+ a.Y

Y = b.1+ a.Y ; b.1

A recursive specification for the always accepting stack is

S = 1+
∑
d∈D

push(d).Td ;S

Td = 1+ pop(d).1+
∑
e∈D

push(e).Te ;Td



Theorem 1

For every guarded sequential specification there is a pushdown
automaton with the same process (with two non-bisimilar states).



Theorem 2

For every one-state pushdown automaton there is a guarded
sequential specification with the same process.



Theorem 3

There is a pushdown automaton with two states, such that there is
no guarded sequential specification with the same process.



Pushdown Automaton

↑ ↓
a[ε/1]
a[1/11]
b[1/ε]

c[ε/ε]
c[1/1]

b[1/ε]

(↑, ε) (↑, 1) (↑, 11) . . .

(↓, ε) (↓, 1) (↓, 11) . . .

a a a

bbb

bbb

c c c



Signals and conditions

� The visible part of the state of a process is a proposition, an
expression in propositional logic

� P1, . . . , Pn propositional variables, constants true, false, logical
connectives

� φ∧Nx is root signal emission
� φ :→ x is guarded command
� Comes with a valuation in every state of the transition system

(BBergstra 1997)
� Stateless bisimulation



Example: coin toss

tails

heads

toss

toss

toss

toss

hurray

T
def
= toss.(heads ∧N1) + toss.(tails ∧N1)

S
def
= T ; (heads :→ hurray .1+ tails :→ S)



Theorem 4

For every pushdown automaton there is a guarded sequential
specification with signals and conditions with the same process.

S = a.(state ↑ ∧NA ;(state ↑:→ S + state ↓:→ 1)) + c.(state ↓∧N1)

A = state ↓:→ b.(state ↓∧N1) +

+ state ↑:→ (a.(state ↑∧NA;A) + b.(state ↑∧N1) + c.(state ↓∧NA)).



Theorem 5

For every guarded sequential specification with signals and
conditions there is a pushdown automaton with the same process.



Conclusion

Interaction is a key ingredient of any computer.
A model of computation needs to incorporate interaction.
Aim is a full integration of automata theory and process theory.
Result is a richer and more refined theory.
Turn lecture notes into a text book.


