
Quantitative polynomial functors

Georgi Nakov Fredrik Nordvall Forsberg

Department of Computer and Information Sciences

University of Strathclyde

CALCO 2021

September 17, 2021

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 1 / 13

Outline

1 Motivation

2 Quantitative Type Theory

3 Quantitative containers and initial algebras

4 Summary

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 2 / 13

Motivation

1 Investigate a systematic way of adding datatypes to dependent type
theories in presence of linearity.

Our approach is based on Containers (Abbott, Altenkirch, and Ghani
2003).

2 Provide a formal theory of datatypes in Idris 2 (Brady 2021), Granule
(Orchard, Liepelt, and Eades III 2019).

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 3 / 13

Motivation

1 Investigate a systematic way of adding datatypes to dependent type
theories in presence of linearity.

Our approach is based on Containers (Abbott, Altenkirch, and Ghani
2003).

2 Provide a formal theory of datatypes in Idris 2 (Brady 2021), Granule
(Orchard, Liepelt, and Eades III 2019).

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 3 / 13

Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995 , works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 4 / 13

Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995 , works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 4 / 13

Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995 , works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 4 / 13

Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995 , works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 4 / 13

Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002,

works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995 , works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 4 / 13

Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995

, works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 4 / 13

Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995 , works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 4 / 13

Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995 , works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 4 / 13

Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995 , works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 4 / 13

Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995 , works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 4 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double : N→ N, x : N ` double x : N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N→ N, x 2

: N ` double x : N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N→ N, x 2

: N ` double x : N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N→ N, x 2

: N ` double x : N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: Π z : N.N, x 2

: N ` double x : N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: Π z

2
: N.N, x 2

: N ` double x : N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N 2→ N, x 2

: N ` double x : N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N 2→ N, x 2

: N ` double x
1
: N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N 2→ N, x 2

: N ` double x
1
: N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N 2→ N, x 2

: N ` double x
1
: N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}

0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N 2→ N, x 2

: N ` double x
1
: N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant

1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N 2→ N, x 2

: N ` double x
1
: N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N 2→ N, x 2

: N ` double x
1
: N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N 2→ N, x 2

: N ` double x
1
: N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double
1
: N 2→ N, x 2

: N ` double x
1
: N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 5 / 13

Quantitative containers

A (extension of) container in ordinary type theory is given by a functor:

F (X) := Σ(s : S).P(s)→ X

A direct translation in QTT yields:

F (X) := (s
1
: S)⊗ (P(s)

1→ X)

Proposition

Let C be the category of closed types and linear functions:

objects - types ` X

morphisms - functions ` f : X
1→ Y

The mapping FS ,P(X) = (S
1
: S)⊗ (P(s)

1→ X) is a functor on C for fixed

S : Type and P : S
0→ Type.

We call any functor isomorphic to one of the form FS ,P a quantitative
container.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 6 / 13

Quantitative containers

A (extension of) container in ordinary type theory is given by a functor:

F (X) := Σ(s : S).P(s)→ X

A direct translation in QTT yields:

F (X) := (s
1
: S)⊗ (P(s)

1→ X)

Proposition

Let C be the category of closed types and linear functions:

objects - types ` X

morphisms - functions ` f : X
1→ Y

The mapping FS ,P(X) = (S
1
: S)⊗ (P(s)

1→ X) is a functor on C for fixed

S : Type and P : S
0→ Type.

We call any functor isomorphic to one of the form FS ,P a quantitative
container.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 6 / 13

Quantitative containers

A (extension of) container in ordinary type theory is given by a functor:

F (X) := Σ(s : S).P(s)→ X

A direct translation in QTT yields:

F (X) := (s
1
: S)⊗ (P(s)

1→ X)

Proposition

Let C be the category of closed types and linear functions:

objects - types ` X

morphisms - functions ` f : X
1→ Y

The mapping FS ,P(X) = (S
1
: S)⊗ (P(s)

1→ X) is a functor on C for fixed

S : Type and P : S
0→ Type.

We call any functor isomorphic to one of the form FS ,P a quantitative
container.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 6 / 13

Quantitative containers

A (extension of) container in ordinary type theory is given by a functor:

F (X) := Σ(s : S).P(s)→ X

A direct translation in QTT yields:

F (X) := (s
1
: S)⊗ (P(s)

1→ X)

Proposition

Let C be the category of closed types and linear functions:

objects - types ` X

morphisms - functions ` f : X
1→ Y

The mapping FS ,P(X) = (S
1
: S)⊗ (P(s)

1→ X) is a functor on C for fixed

S : Type and P : S
0→ Type.

We call any functor isomorphic to one of the form FS ,P a quantitative
container.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 6 / 13

Induction principle

Let W := (W , c : FS,P(W)
1→W) be an FS,P -algebra.

Induction principle

w
0
: W ` Q(w)

0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 7 / 13

Induction principle

Let W := (W , c : FS,P(W)
1→W) be an FS,P -algebra.

Induction principle

w
0
: W ` Q(w)

0
: Type

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 7 / 13

Induction principle

Let W := (W , c : FS,P(W)
1→W) be an FS,P -algebra.

Induction principle

w
0
: W ` Q(w)

0
: Type

Q(c(s, h))

` elim(Q,M)
1
: (w

1
: W)→ Q(w)

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 7 / 13

Induction principle

Let W := (W , c : FS,P(W)
1→W) be an FS,P -algebra.

Induction principle

w
0
: W ` Q(w)

0
: Type

` M
1
: (s

1
: S)→ the shape

Q(c(s, h))

` elim(Q,M)
1
: (w

1
: W)→ Q(w)

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 7 / 13

Induction principle

Let W := (W , c : FS,P(W)
1→W) be an FS,P -algebra.

Induction principle

w
0
: W ` Q(w)

0
: Type

` M
1
: (s

1
: S)→ the shape

(h
0
: P(s)

1→W)→ the positions

Q(c(s, h))

` elim(Q,M)
1
: (w

1
: W)→ Q(w)

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 7 / 13

Induction principle

Let W := (W , c : FS,P(W)
1→W) be an FS,P -algebra.

Induction principle

w
0
: W ` Q(w)

0
: Type

` M
1
: (s

1
: S)→ the shape

(h
0
: P(s)

1→W)→ the positions

((p
1
: P(s))→ Q(h(p)))

1→ i.h.

Q(c(s, h))

` elim(Q,M)
1
: (w

1
: W)→ Q(w)

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 7 / 13

Induction principle

Let W := (W , c : FS,P(W)
1→W) be an FS,P -algebra.

Induction principle

w
0
: W ` Q(w)

0
: Type

` M
1
: (s

1
: S)→ the shape

(h
0
: P(s)

1→W)→ the positions

((p
1
: P(s))→ Q(h(p)))

1→ i.h.

Q(c(s, h))

` elim(Q,M)
1
: (w

1
: W)→ Q(w)

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 7 / 13

Induction via initiality

Theorem

If W is initial, the induction principle holds.

Proof. Adapted from Hermida and Jacobs 1998, Awodey, Gambino, and
Sojakova 2017.

FS ,P(W) W

FS ,P((w
0
: W)⊗ Q) (w

0
: W)⊗ Q

FS ,P(W) W

c

fold

fst

c

construct an FS,P -algebra for (w
0
: W)⊗ Q.

compose the mediating morphism

fold : W
1→ (w

0
: W)⊗ Q with

snd : (x
1
: (w

0
: W)⊗ Q)→ Q(fst(x)).

show that the map fst is an FS ,P -algebra
morphism and so is the composite

fst ◦ fold : W
1→W .

it follows that fst ◦ fold = id.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 8 / 13

Induction via initiality

Theorem

If W is initial, the induction principle holds.

Proof. Adapted from Hermida and Jacobs 1998, Awodey, Gambino, and
Sojakova 2017.

FS ,P(W) W

FS ,P((w
0
: W)⊗ Q) (w

0
: W)⊗ Q

FS ,P(W) W

c

fold

fst

c

construct an FS,P -algebra for (w
0
: W)⊗ Q.

compose the mediating morphism

fold : W
1→ (w

0
: W)⊗ Q with

snd : (x
1
: (w

0
: W)⊗ Q)→ Q(fst(x)).

show that the map fst is an FS ,P -algebra
morphism and so is the composite

fst ◦ fold : W
1→W .

it follows that fst ◦ fold = id.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 8 / 13

Induction via initiality

Theorem

If W is initial, the induction principle holds.

Proof. Adapted from Hermida and Jacobs 1998, Awodey, Gambino, and
Sojakova 2017.

FS ,P(W) W

FS ,P((w
0
: W)⊗ Q) (w

0
: W)⊗ Q

FS ,P(W) W

c

fold

fst

c

construct an FS,P -algebra for (w
0
: W)⊗ Q.

compose the mediating morphism

fold : W
1→ (w

0
: W)⊗ Q with

snd : (x
1
: (w

0
: W)⊗ Q)→ Q(fst(x)).

show that the map fst is an FS ,P -algebra
morphism and so is the composite

fst ◦ fold : W
1→W .

it follows that fst ◦ fold = id.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 8 / 13

Induction via initiality

Theorem

If W is initial, the induction principle holds.

Proof. Adapted from Hermida and Jacobs 1998, Awodey, Gambino, and
Sojakova 2017.

FS ,P(W) W

FS ,P((w
0
: W)⊗ Q) (w

0
: W)⊗ Q

FS ,P(W) W

c

fold

fst

c

construct an FS,P -algebra for (w
0
: W)⊗ Q.

compose the mediating morphism

fold : W
1→ (w

0
: W)⊗ Q with

snd : (x
1
: (w

0
: W)⊗ Q)→ Q(fst(x)).

show that the map fst is an FS ,P -algebra
morphism and so is the composite

fst ◦ fold : W
1→W .

it follows that fst ◦ fold = id.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 8 / 13

Induction via initiality

Theorem

If W is initial, the induction principle holds.

Proof. Adapted from Hermida and Jacobs 1998, Awodey, Gambino, and
Sojakova 2017.

FS ,P(W) W

FS ,P((w
0
: W)⊗ Q) (w

0
: W)⊗ Q

FS ,P(W) W

c

fold

fst

c

construct an FS,P -algebra for (w
0
: W)⊗ Q.

compose the mediating morphism

fold : W
1→ (w

0
: W)⊗ Q with

snd : (x
1
: (w

0
: W)⊗ Q)→ Q(fst(x)).

show that the map fst is an FS ,P -algebra
morphism and so is the composite

fst ◦ fold : W
1→W .

it follows that fst ◦ fold = id.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 8 / 13

Strictly positive types

A polynomial functor F (X) traditionally can also be presented as a strictly
positive type.

Definition (Strictly positive type)

A (non-inductive) strictly positive type over a type variable X is type
expression generated by:

X | K | F × G | F + G | K → F

where F and G are strictly positive types and K is a closed type (with no
type variables).

Theorem (Abbott, Altenkirch, and Ghani 2005)

Every non-inductive strictly positive type can be represented as a container.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 9 / 13

Strictly positive types

A polynomial functor F (X) traditionally can also be presented as a strictly
positive type.

Definition (Strictly positive type)

A (non-inductive) strictly positive type over a type variable X is type
expression generated by:

X | K | F × G | F + G | K → F

where F and G are strictly positive types and K is a closed type (with no
type variables).

Theorem (Abbott, Altenkirch, and Ghani 2005)

Every non-inductive strictly positive type can be represented as a container.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 9 / 13

Quantitative polynomial functors I

However, container representation breaks down in QTT:

0
1→ X ∼= T 6∼= I

2
1→ X ∼= X &X 6∼= X ⊗ X

But we can still inductively generate the class of quantitative polynomial
functors (QPF) by:

Id | ConstK | F ⊗ G | F ⊕ G | F &G | K → −

where F and G are QPFs and K - a closed type.
We can recover the induction principle for QPFs as well.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 10 / 13

Quantitative polynomial functors I

However, container representation breaks down in QTT:

0
1→ X ∼= T 6∼= I

2
1→ X ∼= X &X 6∼= X ⊗ X

But we can still inductively generate the class of quantitative polynomial
functors (QPF) by:

Id | ConstK | F ⊗ G | F ⊕ G | F &G | K → −

where F and G are QPFs and K - a closed type.
We can recover the induction principle for QPFs as well.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 10 / 13

Quantitative polynomial functors I

However, container representation breaks down in QTT:

0
1→ X ∼= T 6∼= I

2
1→ X ∼= X &X 6∼= X ⊗ X

But we can still inductively generate the class of quantitative polynomial
functors (QPF) by:

Id | ConstK | F ⊗ G | F ⊕ G | F &G | K → −

where F and G are QPFs and K - a closed type.

We can recover the induction principle for QPFs as well.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 10 / 13

Quantitative polynomial functors I

However, container representation breaks down in QTT:

0
1→ X ∼= T 6∼= I

2
1→ X ∼= X &X 6∼= X ⊗ X

But we can still inductively generate the class of quantitative polynomial
functors (QPF) by:

Id | ConstK | F ⊗ G | F ⊕ G | F &G | K → −

where F and G are QPFs and K - a closed type.
We can recover the induction principle for QPFs as well.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 10 / 13

Quantitative polynomial functors II

Manually define a predicate lifting F̂X : (Q : X → Type)→ (F (X)→ Type)
to encode the induction hypothesis:

Îd(Q, z) := Q(z) F̂ ⊗ G (Q, z) := F̂ (Q, fst z)⊗ Ĝ (Q, snd z)

ĈonstK (Q, z):= K . . .

Let F be a QPF and W := (W , c : F (W)
1→W) - an F -algebra.

Induction principle for QPFs

w
0
: W ` Q(w)

0
: Type

` M
1
: ((w

0
: F (W))⊗ F̂ (Q,w))

1→
1→ Q(c(w))

` elim(Q,M) : (w
1
: W)→ Q(w)

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 11 / 13

Quantitative polynomial functors II

Manually define a predicate lifting F̂X : (Q : X → Type)→ (F (X)→ Type)
to encode the induction hypothesis:

Îd(Q, z) := Q(z) F̂ ⊗ G (Q, z) := F̂ (Q, fst z)⊗ Ĝ (Q, snd z)

ĈonstK (Q, z):= K . . .

Let F be a QPF and W := (W , c : F (W)
1→W) - an F -algebra.

Induction principle for QPFs

w
0
: W ` Q(w)

0
: Type

` M
1
: ((w

0
: F (W))⊗ F̂ (Q,w))

1→
1→ Q(c(w))

` elim(Q,M) : (w
1
: W)→ Q(w)

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 11 / 13

Quantitative polynomial functors II

Manually define a predicate lifting F̂X : (Q : X → Type)→ (F (X)→ Type)
to encode the induction hypothesis:

Îd(Q, z) := Q(z) F̂ ⊗ G (Q, z) := F̂ (Q, fst z)⊗ Ĝ (Q, snd z)

ĈonstK (Q, z):= K . . .

Let F be a QPF and W := (W , c : F (W)
1→W) - an F -algebra.

Induction principle for QPFs

w
0
: W ` Q(w)

0
: Type

` M
1
: ((w

0
: F (W))⊗ F̂ (Q,w))

1→
1→ Q(c(w))

` elim(Q,M) : (w
1
: W)→ Q(w)

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 11 / 13

Quantitative polynomial functors III

Theorem

The induction principle holds if W is initial.

Proof. Use a distributive lemma for the dependent tensor and the predicate
lifting:

Lemma

F ((w
0
: W)⊗ Q) ∼= (w

0
: F (W))⊗ F̂ (Q,w).

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 12 / 13

Summary and further directions

What we have done so far:

given a description of a quantitative container and a quantitative
polynomial functor

derived an induction principle for QPFs assuming initiality

shown the existence of initial algebras for finitary QPFs in a realisability
model

We hope to extend this work by:

giving a semantic characterisation of QPFs.

constructing initial algebras for non-finitary QPFs.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

Summary and further directions

What we have done so far:

given a description of a quantitative container and a quantitative
polynomial functor

derived an induction principle for QPFs assuming initiality

shown the existence of initial algebras for finitary QPFs in a realisability
model

We hope to extend this work by:

giving a semantic characterisation of QPFs.

constructing initial algebras for non-finitary QPFs.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

Summary and further directions

What we have done so far:

given a description of a quantitative container and a quantitative
polynomial functor

derived an induction principle for QPFs assuming initiality

shown the existence of initial algebras for finitary QPFs in a realisability
model

We hope to extend this work by:

giving a semantic characterisation of QPFs.

constructing initial algebras for non-finitary QPFs.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

Summary and further directions

What we have done so far:

given a description of a quantitative container and a quantitative
polynomial functor

derived an induction principle for QPFs assuming initiality

shown the existence of initial algebras for finitary QPFs in a realisability
model

We hope to extend this work by:

giving a semantic characterisation of QPFs.

constructing initial algebras for non-finitary QPFs.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

Summary and further directions

What we have done so far:

given a description of a quantitative container and a quantitative
polynomial functor

derived an induction principle for QPFs assuming initiality

shown the existence of initial algebras for finitary QPFs in a realisability
model

We hope to extend this work by:

giving a semantic characterisation of QPFs.

constructing initial algebras for non-finitary QPFs.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

Summary and further directions

What we have done so far:

given a description of a quantitative container and a quantitative
polynomial functor

derived an induction principle for QPFs assuming initiality

shown the existence of initial algebras for finitary QPFs in a realisability
model

We hope to extend this work by:

giving a semantic characterisation of QPFs.

constructing initial algebras for non-finitary QPFs.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

Thank you for your attention!

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

References I

Michael Abbott, Thorsten Altenkirch, and Neil Ghani.
“Categories of containers”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 2620 (2003).
ISBN: 3540008977, pp. 23–38. (Visited on 04/14/2021).

Michael Abbott, Thorsten Altenkirch, and Neil Ghani.
“Containers: Constructing strictly positive types”. en. In:
Theoretical Computer Science. Applied Semantics: Selected
Topics 342.1 (Sept. 2005), pp. 3–27. url:
https://www.sciencedirect.com/science/article/pii/

S0304397505003373 (visited on 08/28/2021).

Steve Awodey, Nicola Gambino, and Kristina Sojakova.
“Homotopy-Initial Algebras in Type Theory”. In: Journal of the
ACM 63.6 (2017).

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

https://www.sciencedirect.com/science/article/pii/S0304397505003373
https://www.sciencedirect.com/science/article/pii/S0304397505003373

References II

Robert Atkey. “Syntax and Semantics of Quantitative Type
Theory”. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science - LICS ’18. ISSN:
10436871. New York, New York, USA: ACM Press, 2018,
pp. 56–65. url: http:
//dl.acm.org/citation.cfm?doid=3209108.3209189.

Nick Benton. “A mixed linear and non-linear logic: Proofs, terms
and models”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 933. ISSN: 16113349. Springer,
Berlin, Heidelberg, 1995, pp. 121–135. url:
http://link.springer.com/10.1007/BFb0022251.

Edwin Brady. “Idris 2: Quantitative Type Theory in Practice”.
In: arXiv:2104.00480 [cs] (Apr. 2021). arXiv: 2104.00480. url:
http://arxiv.org/abs/2104.00480 (visited on 08/31/2021).

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

http://dl.acm.org/citation.cfm?doid=3209108.3209189
http://dl.acm.org/citation.cfm?doid=3209108.3209189
http://link.springer.com/10.1007/BFb0022251
http://arxiv.org/abs/2104.00480

References III

Iliano Cervesato and Frank Pfenning. “A Linear Logical
Framework”. In: Information and Computation 179.1 (Nov.
2002). Publisher: Academic Press, pp. 19–75. url:
https://linkinghub.elsevier.com/retrieve/pii/

S0890540101929517 (visited on 04/23/2021).

Claudio Hermida and Bart Jacobs. “Structural Induction and
Coinduction in a Fibrational Setting”. In: Information and
Computation 145.2 (Sept. 1998). Publisher: Academic Press,
pp. 107–152. url: https://linkinghub.elsevier.com/
retrieve/pii/S0890540198927250 (visited on 03/18/2021).

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

https://linkinghub.elsevier.com/retrieve/pii/S0890540101929517
https://linkinghub.elsevier.com/retrieve/pii/S0890540101929517
https://linkinghub.elsevier.com/retrieve/pii/S0890540198927250
https://linkinghub.elsevier.com/retrieve/pii/S0890540198927250

References IV

Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton.
“Integrating Linear and Dependent Types”. In: ACM SIGPLAN
Notices 50.1 (May 2015). Publisher: Association for Computing
Machinery (ACM), pp. 17–30. url:
https://dl.acm.org/doi/10.1145/2775051.2676969

(visited on 04/23/2021).

Conor McBride. “I Got Plenty o’ Nuttin’”. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 9600.
ISSN: 16113349. Springer Verlag, 2016, pp. 207–233. url:
http://link.springer.com/10.1007/978-3-319-30936-

1_12 (visited on 09/27/2020).

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

https://dl.acm.org/doi/10.1145/2775051.2676969
http://link.springer.com/10.1007/978-3-319-30936-1_12
http://link.springer.com/10.1007/978-3-319-30936-1_12

References V

Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III.
“Quantitative program reasoning with graded modal types”. In:
Proceedings of the ACM on Programming Languages 3.ICFP
(July 2019), 110:1–110:30. url:
https://doi.org/10.1145/3341714 (visited on 06/11/2021).

Matthijs Vákár. “In search of effectful dependent types”.
PhD thesis. University of Oxford, 2017.

G. Nakov, Fr. Nordvall Forsberg Quantitative polynomial functors September 17, 2021 13 / 13

https://doi.org/10.1145/3341714

	Motivation
	Quantitative Type Theory
	Quantitative containers and initial algebras
	Summary
	References

