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Motivation

1 Investigate a systematic way of adding datatypes to dependent type
theories in presence of linearity.

Our approach is based on Containers (Abbott, Altenkirch, and Ghani
2003).

2 Provide a formal theory of datatypes in Idris 2 (Brady 2021), Granule
(Orchard, Liepelt, and Eades III 2019).
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Linear logic and type theory

Adding linearity to dependent type theories:

allows for precise usage tracking, viewing data as a computational
resource.

could enforce some restricted behaviour, e.g. in-place updates.

could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning
2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017,
based on Linear/Non-Linear logic Benton 1995 , works by Orchard et al.
2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

offers a clear distinction between computation usage and type
formation.

always possible to contemplate already consumed things.

type formation does not consume resources.
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Anatomy of a QTT judgement

annotations denote resources from an arbitrary usage semiring R

typical choices for R are N, {0, 1, ω}

double : N→ N, x : N ` double x : N

if the term double x on the rhs is annotated with σ, then:

σ ∈ {0, 1}
0 - double x is computationally irrelevant
1 - double x has computational content

applying a predicate to double x

n
0
: N ` even(n)

0
: Type

double
0
: N 2→ N, x 0

: N ` even(double x)
0
: Type
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Quantitative containers

A (extension of) container in ordinary type theory is given by a functor:

F (X ) := Σ(s : S).P(s)→ X

A direct translation in QTT yields:

F (X ) := (s
1
: S)⊗ (P(s)

1→ X )

Proposition

Let C be the category of closed types and linear functions:

objects - types ` X

morphisms - functions ` f : X
1→ Y

The mapping FS ,P(X ) = (S
1
: S)⊗ (P(s)

1→ X ) is a functor on C for fixed

S : Type and P : S
0→ Type.

We call any functor isomorphic to one of the form FS ,P a quantitative
container.
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Induction principle

Let W := (W , c : FS,P(W )
1→W ) be an FS,P -algebra.

Induction principle

w
0
: W ` Q(w)

0
: Type
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Induction via initiality

Theorem

If W is initial, the induction principle holds.

Proof. Adapted from Hermida and Jacobs 1998, Awodey, Gambino, and
Sojakova 2017.

FS ,P(W ) W

FS ,P((w
0
: W )⊗ Q) (w

0
: W )⊗ Q

FS ,P(W ) W

c

fold

fst

c

construct an FS,P -algebra for (w
0
: W )⊗ Q.

compose the mediating morphism

fold : W
1→ (w

0
: W )⊗ Q with

snd : (x
1
: (w

0
: W )⊗ Q)→ Q(fst(x)).

show that the map fst is an FS ,P -algebra
morphism and so is the composite

fst ◦ fold : W
1→W .

it follows that fst ◦ fold = id.
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Strictly positive types

A polynomial functor F (X ) traditionally can also be presented as a strictly
positive type.

Definition (Strictly positive type)

A (non-inductive) strictly positive type over a type variable X is type
expression generated by:

X | K | F × G | F + G | K → F

where F and G are strictly positive types and K is a closed type (with no
type variables).

Theorem (Abbott, Altenkirch, and Ghani 2005)

Every non-inductive strictly positive type can be represented as a container.
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Quantitative polynomial functors I

However, container representation breaks down in QTT:

0
1→ X ∼= T 6∼= I

2
1→ X ∼= X &X 6∼= X ⊗ X

But we can still inductively generate the class of quantitative polynomial
functors (QPF) by:

Id | ConstK | F ⊗ G | F ⊕ G | F &G | K → −

where F and G are QPFs and K - a closed type.
We can recover the induction principle for QPFs as well.
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Quantitative polynomial functors II

Manually define a predicate lifting F̂X : (Q : X → Type)→ (F (X )→ Type)
to encode the induction hypothesis:

Îd(Q, z) := Q(z) F̂ ⊗ G (Q, z) := F̂ (Q, fst z)⊗ Ĝ (Q, snd z)

ĈonstK (Q, z):= K . . .

Let F be a QPF and W := (W , c : F (W )
1→W ) - an F -algebra.

Induction principle for QPFs

w
0
: W ` Q(w)

0
: Type

` M
1
: ((w

0
: F (W ))⊗ F̂ (Q,w))

1→
1→ Q(c(w))

` elim(Q,M) : (w
1
: W )→ Q(w)
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Quantitative polynomial functors III

Theorem

The induction principle holds if W is initial.

Proof. Use a distributive lemma for the dependent tensor and the predicate
lifting:

Lemma

F ((w
0
: W )⊗ Q) ∼= (w

0
: F (W ))⊗ F̂ (Q,w).
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Summary and further directions

What we have done so far:

given a description of a quantitative container and a quantitative
polynomial functor

derived an induction principle for QPFs assuming initiality

shown the existence of initial algebras for finitary QPFs in a realisability
model

We hope to extend this work by:

giving a semantic characterisation of QPFs.

constructing initial algebras for non-finitary QPFs.
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Thank you for your attention!
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