Quantitative polynomial functors

Georgi Nakov Fredrik Nordvall Forsberg

Department of Computer and Information Sciences

University of Strathclyde

CALCO 2021

September 17, 2021

G. Nakov, Fr. Nordvall Forsberg

Quantitative polynomial functors

Quantitative Type Theory

Quantitative containers and initial algebras

- Investigate a systematic way of adding datatypes to dependent type theories in presence of linearity.
 - Our approach is based on Containers (Abbott, Altenkirch, and Ghani 2003).

- Investigate a systematic way of adding datatypes to dependent type theories in presence of linearity.
 - Our approach is based on Containers (Abbott, Altenkirch, and Ghani 2003).
- Provide a formal theory of datatypes in Idris 2 (Brady 2021), Granule (Orchard, Liepelt, and Eades III 2019).

Linear logic and type theory

Adding linearity to dependent type theories:

< 47 ▶

Linear logic and type theory

Adding linearity to dependent type theories:

 allows for precise usage tracking, viewing data as a computational resource.

Linear logic and type theory

Adding linearity to dependent type theories:

- allows for precise usage tracking, viewing data as a computational resource.
- could enforce some restricted behaviour, e.g. in-place updates.

- allows for precise usage tracking, viewing data as a computational resource.
- could enforce some restricted behaviour, e.g. in-place updates.
- could lead to more efficient implementations, e.g. erasability.

- allows for precise usage tracking, viewing data as a computational resource.
- could enforce some restricted behaviour, e.g. in-place updates.
- could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning 2002,

- allows for precise usage tracking, viewing data as a computational resource.
- could enforce some restricted behaviour, e.g. in-place updates.
- could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning 2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017, based on Linear/Non-Linear logic Benton 1995

- allows for precise usage tracking, viewing data as a computational resource.
- could enforce some restricted behaviour, e.g. in-place updates.
- could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning 2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017, based on Linear/Non-Linear logic Benton 1995, works by Orchard et al. 2019, Fu et al. 2020 and Abel and Bernardy 2020.

- allows for precise usage tracking, viewing data as a computational resource.
- could enforce some restricted behaviour, e.g. in-place updates.
- could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning 2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017, based on Linear/Non-Linear logic Benton 1995, works by Orchard et al. 2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

• offers a clear distinction between computation usage and type formation.

- allows for precise usage tracking, viewing data as a computational resource.
- could enforce some restricted behaviour, e.g. in-place updates.
- could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning 2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017, based on Linear/Non-Linear logic Benton 1995, works by Orchard et al. 2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

- offers a clear distinction between computation usage and type formation.
- always possible to contemplate already consumed things.

< □ > < □ > < □ > < □ > < □ > < □ >

- allows for precise usage tracking, viewing data as a computational resource.
- could enforce some restricted behaviour, e.g. in-place updates.
- could lead to more efficient implementations, e.g. erasability.

Active research area - Linear Logical Framework by Cervesato and Pfenning 2002, works by Krishnaswami, Pradic, and Benton 2015 and Vákár 2017, based on Linear/Non-Linear logic Benton 1995, works by Orchard et al. 2019, Fu et al. 2020 and Abel and Bernardy 2020.

Quantitative Type Theory (QTT) (McBride 2016, Atkey 2018):

- offers a clear distinction between computation usage and type formation.
- always possible to contemplate already consumed things.
- type formation does not consume resources.

$\mathsf{double}:\mathbb{N}\to\mathbb{N},\mathsf{x}:\mathbb{N}\vdash\mathsf{double}\,\mathsf{x}:\mathbb{N}$

$\mathsf{double} \stackrel{1}{:} \mathbb{N} \to \mathbb{N}, \mathsf{x} \stackrel{2}{:} \mathbb{N} \vdash \mathsf{double} \; \mathsf{x} : \mathbb{N}$

• annotations denote resources from an arbitrary usage semiring R

double
$$\stackrel{1}{:} \mathbb{N} \to \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \text{double } x : \mathbb{N}$$

double
$$\stackrel{1}{:} \mathbb{N} \to \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \mathsf{double} \ x : \mathbb{N}$$

annotations denote resources from an arbitrary usage semiring R
typical choices for R are N, {0,1,ω}

double $\stackrel{1}{:} \prod z : \mathbb{N} . \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash$ double $x : \mathbb{N}$

annotations denote resources from an arbitrary usage semiring R
typical choices for R are N, {0,1,ω}

double $\stackrel{1}{:} \prod z \stackrel{2}{:} \mathbb{N} . \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash$ double $x : \mathbb{N}$

double
$$\stackrel{1}{:} \mathbb{N} \stackrel{2}{\rightarrow} \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \text{double } x : \mathbb{N}$$

double
$$\stackrel{1}{:} \mathbb{N} \stackrel{2}{\rightarrow} \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \text{double } x \stackrel{1}{:} \mathbb{N}$$

annotations denote resources from an arbitrary usage semiring R
typical choices for R are N, {0,1,ω}

double
$$\stackrel{1}{:} \mathbb{N} \stackrel{2}{\rightarrow} \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \text{double } x \stackrel{1}{:} \mathbb{N}$$

• if the term double x on the rhs is annotated with σ , then:

annotations denote resources from an arbitrary usage semiring R
typical choices for R are N, {0,1,ω}

double
$$\stackrel{1}{:} \mathbb{N} \stackrel{2}{\rightarrow} \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \text{double } x \stackrel{1}{:} \mathbb{N}$$

• if the term double x on the rhs is annotated with $\sigma,$ then: • $\sigma \in \{0,1\}$

double
$$\stackrel{1}{:} \mathbb{N} \stackrel{2}{\rightarrow} \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \text{double } x \stackrel{1}{:} \mathbb{N}$$

- if the term double x on the rhs is annotated with σ , then:
 - $\sigma \in \{0, 1\}$
 - 0 double x is computationally irrelevant

double
$$\stackrel{1}{:} \mathbb{N} \stackrel{2}{\rightarrow} \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \text{double } x \stackrel{1}{:} \mathbb{N}$$

- if the term double x on the rhs is annotated with σ , then:
 - $\sigma \in \{0, 1\}$
 - 0 double x is computationally irrelevant
 - 1 double x has computational content

double
$$\stackrel{1}{:} \mathbb{N} \stackrel{2}{\rightarrow} \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \text{double } x \stackrel{1}{:} \mathbb{N}$$

- if the term double x on the rhs is annotated with σ , then:
 - $\sigma \in \{0, 1\}$
 - 0 double x is computationally irrelevant
 - 1 double x has computational content
- applying a predicate to double x

double
$$\stackrel{1}{:} \mathbb{N} \stackrel{2}{\rightarrow} \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \text{double } x \stackrel{1}{:} \mathbb{N}$$

- if the term double x on the rhs is annotated with σ , then:
 - $\sigma \in \{0, 1\}$
 - 0 double x is computationally irrelevant
 - 1 double x has computational content
- applying a predicate to double x

$$n \stackrel{0}{:} \mathbb{N} \vdash even(n) \stackrel{0}{:} Type$$

double
$$\stackrel{1}{:} \mathbb{N} \stackrel{2}{\rightarrow} \mathbb{N}, x \stackrel{2}{:} \mathbb{N} \vdash \text{double } x \stackrel{1}{:} \mathbb{N}$$

- if the term double x on the rhs is annotated with σ , then:
 - $\sigma \in \{0, 1\}$
 - 0 double x is computationally irrelevant
 - 1 double x has computational content
- applying a predicate to double x

$$\begin{array}{c} n \stackrel{0}{:} \mathbb{N} \vdash \mathsf{even}(n) \stackrel{0}{:} \mathsf{Type} \\ \mathsf{double} \stackrel{0}{:} \mathbb{N} \stackrel{2}{\rightarrow} \mathbb{N}, x \stackrel{0}{:} \mathbb{N} \vdash \mathsf{even}(\mathsf{double} x) \stackrel{0}{:} \mathsf{Type} \end{array}$$

A (extension of) container in ordinary type theory is given by a functor: $F(X) := \Sigma(s:S). P(s) \to X$

э

A (extension of) container in ordinary type theory is given by a functor: $F(X) := \Sigma(s:S). P(s) \to X$

A direct translation in QTT yields:

$$F(X) := (s \stackrel{1}{:} S) \otimes (P(s) \stackrel{1}{\to} X)$$

A (extension of) container in ordinary type theory is given by a functor:

$$F(X) := \Sigma(s:S). P(s) \rightarrow X$$

A direct translation in QTT yields:

$$F(X) := (s \stackrel{1}{:} S) \otimes (P(s) \stackrel{1}{\to} X)$$

Proposition

Let $\ensuremath{\mathcal{C}}$ be the category of closed types and linear functions:

- objects types $\vdash X$
- morphisms functions $\vdash f : X \xrightarrow{1} Y$

The mapping $F_{S,P}(X) = (S \stackrel{1}{:} S) \otimes (P(s) \stackrel{1}{\to} X)$ is a functor on C for fixed S: Type and $P: S \stackrel{0}{\to}$ Type.

A (extension of) container in ordinary type theory is given by a functor:

$$F(X) := \Sigma(s:S). P(s) \rightarrow X$$

A direct translation in QTT yields:

$$F(X) := (s \stackrel{1}{:} S) \otimes (P(s) \stackrel{1}{\to} X)$$

Proposition

Let $\ensuremath{\mathcal{C}}$ be the category of closed types and linear functions:

- objects types $\vdash X$
- morphisms functions $\vdash f : X \xrightarrow{1} Y$

The mapping $F_{S,P}(X) = (S \stackrel{1}{:} S) \otimes (P(s) \stackrel{1}{\to} X)$ is a functor on C for fixed S: Type and $P: S \stackrel{0}{\to}$ Type.

We call any functor isomorphic to one of the form $F_{S,P}$ a quantitative container.

G. Nakov, Fr. Nordvall Forsberg

-

- ∢ 🗗 ▶

э

Induction principle

 $w \stackrel{0}{:} W \vdash Q(w) \stackrel{0}{:} \mathsf{Type}$

G. Nakov, Fr. Nordvall Forsberg

Quantitative polynomial functors

September 17, 2021 7 / 13

Induction principle

$$w \stackrel{0}{:} W \vdash Q(w) \stackrel{0}{:} \mathsf{Type}$$

$$\vdash \mathsf{elim}(Q,M) \stackrel{1}{:} (w \stackrel{1}{:} W) \rightarrow Q(w)$$

G. Nakov, Fr. Nordvall Forsberg

Quantitative polynomial functors

September 17, 2021 7 / 13

Let
$$\mathbf{W}:=(W,c:F_{S,P}(W)\stackrel{1}{
ightarrow}W)$$
 be an $F_{S,P}$ -algebra.

Induction principle

$$w \stackrel{0}{:} W \vdash Q(w) \stackrel{0}{:}$$
Type
 $\vdash M \stackrel{1}{:} (s \stackrel{1}{:} S) \rightarrow$ the shape

$$\vdash \mathsf{elim}(Q,M) \stackrel{1}{\vdots} (w \stackrel{1}{\vdots} W) \to Q(w)$$

G. Nakov, Fr. Nordvall Forsberg

Induction principle

$$w \stackrel{0}{:} W \vdash Q(w) \stackrel{0}{:} \text{Type}$$

 $\vdash M \stackrel{1}{:} (s \stackrel{1}{:} S) \rightarrow \qquad the shape$
 $(h \stackrel{0}{:} P(s) \stackrel{1}{\to} W) \rightarrow \qquad the positions$

< A > <

$$\vdash \mathsf{elim}(Q,M) \stackrel{1}{:} (w \stackrel{1}{:} W) \to Q(w)$$

э

Induction principle $w \stackrel{0}{:} W \vdash Q(w) \stackrel{0}{:} Type$ $\vdash M \stackrel{1}{:} (s \stackrel{1}{:} S) \rightarrow$ $\vdash M \stackrel{0}{:} (s \stackrel{1}{:} S) \rightarrow$ $(h \stackrel{0}{:} P(s) \stackrel{1}{\rightarrow} W) \rightarrow$ $((p \stackrel{1}{:} P(s)) \rightarrow Q(h(p))) \stackrel{1}{\rightarrow}$

$$\vdash \mathsf{elim}(Q,M) \stackrel{1}{:} (w \stackrel{1}{:} W) \to Q(w)$$

G. Nakov, Fr. Nordvall Forsberg

Induction principle $w \stackrel{0}{:} W \vdash Q(w) \stackrel{0}{:} Type$ $\vdash M^{\frac{1}{2}}(s^{\frac{1}{2}}S) \rightarrow$ the shape $(h \stackrel{0}{:} P(s) \stackrel{1}{\to} W) \rightarrow$ the positions $((p \stackrel{1}{:} P(s)) \rightarrow Q(h(p))) \stackrel{1}{\rightarrow}$ i.h. Q(c(s, h)) $\vdash \operatorname{elim}(Q, M) \stackrel{1}{:} (w \stackrel{1}{:} W) \rightarrow Q(w)$

Induction via initiality

Theorem

If **W** is initial, the induction principle holds.

If W is initial, the induction principle holds.

Proof. Adapted from Hermida and Jacobs 1998, Awodey, Gambino, and Sojakova 2017.

If W is initial, the induction principle holds.

Proof. Adapted from Hermida and Jacobs 1998, Awodey, Gambino, and Sojakova 2017.

If W is initial, the induction principle holds.

Proof. Adapted from Hermida and Jacobs 1998, Awodey, Gambino, and Sojakova 2017.

If W is initial, the induction principle holds.

Proof. Adapted from Hermida and Jacobs 1998, Awodey, Gambino, and Sojakova 2017.

< □ > < 凸

• it follows that $fst \circ fold = id$.

A polynomial functor F(X) traditionally can also be presented as a strictly positive type.

Definition (Strictly positive type)

A (non-inductive) strictly positive type over a type variable X is type expression generated by:

$$X \mid K \mid F \times G \mid F + G \mid K \to F$$

where F and G are strictly positive types and K is a closed type (with no type variables).

A polynomial functor F(X) traditionally can also be presented as a strictly positive type.

Definition (Strictly positive type)

A (non-inductive) strictly positive type over a type variable X is type expression generated by:

$$X \mid K \mid F \times G \mid F + G \mid K \to F$$

where F and G are strictly positive types and K is a closed type (with no type variables).

Theorem (Abbott, Altenkirch, and Ghani 2005)

Every non-inductive strictly positive type can be represented as a container.

< □ > < □ > < □ > < □ > < □ > < □ >

$$\mathbf{0} \stackrel{1}{\to} X \cong \mathbf{T} \not\cong \mathbf{I}$$
$$\mathbf{2} \stackrel{1}{\to} X \cong X \& X \not\cong X \otimes X$$

$$\mathbf{0} \stackrel{1}{\to} X \cong \mathbf{T} \not\cong \mathbf{I}$$
$$\mathbf{2} \stackrel{1}{\to} X \cong X \& X \not\cong X \otimes X$$

But we can still inductively generate the class of quantitative polynomial functors (QPF) by:

```
\mathsf{Id} \mid \mathsf{Const}_{K} \mid F \otimes G \mid F \oplus G \mid F \And G \mid K \to -
```

where F and G are QPFs and K - a closed type.

$$\mathbf{0} \stackrel{1}{\rightarrow} X \cong \mathbf{T} \not\cong \mathbf{I}$$
$$\mathbf{2} \stackrel{1}{\rightarrow} X \cong X \& X \not\cong X \otimes X$$

But we can still inductively generate the class of quantitative polynomial functors (QPF) by:

```
\mathsf{Id} \mid \mathsf{Const}_{K} \mid F \otimes G \mid F \oplus G \mid F \And G \mid K \to -
```

where F and G are QPFs and K - a closed type. We can recover the induction principle for QPFs as well.

10/13

Quantitative polynomial functors II

Manually define a predicate lifting $\widehat{F}_X : (Q : X \to \mathsf{Type}) \to (F(X) \to \mathsf{Type})$ to encode the induction hypothesis:

Quantitative polynomial functors II

Manually define a predicate lifting $\widehat{F}_X : (Q : X \to \mathsf{Type}) \to (F(X) \to \mathsf{Type})$ to encode the induction hypothesis:

$$\widehat{\mathsf{Id}}(Q,z) := Q(z) \qquad \widehat{F \otimes G}(Q,z) := \widehat{F}(Q,\mathsf{fst}\ z) \otimes \widehat{G}(Q,\mathsf{snd}\ z)$$

$$\widehat{\mathsf{Const}_{K}}(Q,z) := K \qquad \dots$$

Quantitative polynomial functors II

Manually define a predicate lifting $\widehat{F}_X : (Q : X \to \mathsf{Type}) \to (F(X) \to \mathsf{Type})$ to encode the induction hypothesis:

 $\widehat{\mathsf{Id}}(Q,z) := Q(z) \qquad \widehat{F \otimes G}(Q,z) := \widehat{F}(Q,\mathsf{fst}\ z) \otimes \widehat{G}(Q,\mathsf{snd}\ z)$ $\widehat{\mathsf{Const}_K}(Q,z) := K \qquad \dots$

Let F be a QPF and $\mathbf{W} := (W, c : F(W) \xrightarrow{1} W)$ - an F-algebra.

Induction principle for QPFs

$$w \stackrel{0}{:} W \vdash Q(w) \stackrel{0}{:} \text{Type}$$
$$\vdash M \stackrel{1}{:} ((w \stackrel{0}{:} F(W)) \otimes \widehat{F}(Q, w)) \stackrel{1}{\rightarrow}$$
$$\frac{1}{\rightarrow} Q(c(w))$$
$$\vdash \text{elim}(Q, M) : (w \stackrel{1}{:} W) \rightarrow Q(w)$$

G. Nakov, Fr. Nordvall Forsberg

11/13

The induction principle holds if W is initial.

Proof. Use a distributive lemma for the dependent tensor and the predicate lifting:

Lemma

$$F((w \stackrel{0}{:} W) \otimes Q) \cong (w \stackrel{0}{:} F(W)) \otimes \widehat{F}(Q, w).$$

• given a description of a quantitative container and a quantitative polynomial functor

- given a description of a quantitative container and a quantitative polynomial functor
- derived an induction principle for QPFs assuming initiality

- given a description of a quantitative container and a quantitative polynomial functor
- derived an induction principle for QPFs assuming initiality
- shown the existence of initial algebras for finitary QPFs in a realisability model

- given a description of a quantitative container and a quantitative polynomial functor
- derived an induction principle for QPFs assuming initiality
- shown the existence of initial algebras for finitary QPFs in a realisability model

We hope to extend this work by:

• giving a semantic characterisation of QPFs.

- given a description of a quantitative container and a quantitative polynomial functor
- derived an induction principle for QPFs assuming initiality
- shown the existence of initial algebras for finitary QPFs in a realisability model
- We hope to extend this work by:
 - giving a semantic characterisation of QPFs.
 - constructing initial algebras for non-finitary QPFs.

Thank you for your attention!

References I

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. "Categories of containers". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2620 (2003). ISBN: 3540008977, pp. 23–38. (Visited on 04/14/2021).

- Michael Abbott, Thorsten Altenkirch, and Neil Ghani. "Containers: Constructing strictly positive types". en. In: *Theoretical Computer Science*. Applied Semantics: Selected Topics 342.1 (Sept. 2005), pp. 3–27. URL: https://www.sciencedirect.com/science/article/pii/ S0304397505003373 (visited on 08/28/2021).
- Steve Awodey, Nicola Gambino, and Kristina Sojakova. "Homotopy-Initial Algebras in Type Theory". In: *Journal of the ACM* 63.6 (2017).

References II

Robert Atkey. "Syntax and Semantics of Quantitative Type Theory". In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science - LICS '18. ISSN: 10436871. New York, New York, USA: ACM Press, 2018, pp. 56–65. URL: http:

//dl.acm.org/citation.cfm?doid=3209108.3209189.

Nick Benton. "A mixed linear and non-linear logic: Proofs, terms and models". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 933. ISSN: 16113349. Springer, Berlin, Heidelberg, 1995, pp. 121–135. URL: http://link.springer.com/10.1007/BFb0022251.

Edwin Brady. "Idris 2: Quantitative Type Theory in Practice". In: *arXiv:2104.00480* [cs] (Apr. 2021). arXiv: 2104.00480. URL: http://arxiv.org/abs/2104.00480 (visited on 08/31/2021).

Iliano Cervesato and Frank Pfenning. "A Linear Logical Framework". In: Information and Computation 179.1 (Nov. 2002). Publisher: Academic Press, pp. 19-75. URL: https://linkinghub.elsevier.com/retrieve/pii/ S0890540101929517 (visited on 04/23/2021).

Claudio Hermida and Bart Jacobs. "Structural Induction and Coinduction in a Fibrational Setting". In: Information and Computation 145.2 (Sept. 1998). Publisher: Academic Press, pp. 107–152. URL: https://linkinghub.elsevier.com/ retrieve/pii/S0890540198927250 (visited on 03/18/2021).

Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. "Integrating Linear and Dependent Types". In: ACM SIGPLAN Notices 50.1 (May 2015). Publisher: Association for Computing Machinery (ACM), pp. 17–30. URL: https://dl.acm.org/doi/10.1145/2775051.2676969 (visited on 04/23/2021).

Conor McBride. "I Got Plenty o' Nuttin". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9600. ISSN: 16113349. Springer Verlag, 2016, pp. 207–233. URL: http://link.springer.com/10.1007/978-3-319-30936-1_12 (visited on 09/27/2020).

Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. "Quantitative program reasoning with graded modal types". In: *Proceedings of the ACM on Programming Languages* 3.ICFP (July 2019), 110:1–110:30. URL: https://doi.org/10.1145/3341714 (visited on 06/11/2021).

Matthijs Vákár. "In search of effectful dependent types". PhD thesis. University of Oxford, 2017.