PRESENTING CONVEX SETS OF PROBABILITY DISTRIBUTIONS BY CONVEX SEMILATTICES AND UNIQUE BASES

Filippo Bonchi ${ }^{1}$ Ana Sokolova ${ }^{2}$ Valeria Vignudelli ${ }^{3}$
${ }^{1}$ University of Pisa, Italy
${ }^{2}$ University of Salzburg, Austria
${ }^{3}$ CNRS/ENS Lyon, France

A NEW PROOF OF...

The monad of convex sets of probability distributions is presented by
the equational theory of convex semilattices

A NEW PROOF OF...

modelling of

 nondeterministic+probabilistic programsThe monad of convex sets of probability distributions is presented by
the equational theory of convex semilattices
equational reasoning on
nondeterministic+probabilistic programs

A NEW PROOF OF...

modelling of

 nondeterministic+probabilistic programsThe monad of convex sets of probability distributions is presented by the equational theory of convex semilattices
equational reasoning on nondeterministic+probabilistic programs
[Bonchi, Sokolova, V. LICS 2019] + verification of trace equivalence

Monads and Equational Theories for

 Nondeterminism and Probability
MONADS AND EQUATIONAL THEORIES

Monad ($\mathcal{M}, \eta, \mu)$ in Sets

■ functor $\mathcal{M}: X \mapsto \mathcal{M}(X)$
■ unit $\eta_{X}: X \rightarrow \mathcal{M}(X)$
■ multiplication $\mu_{X}: \mathcal{M} \mathcal{M}(X) \rightarrow \mathcal{M}(X)$

MONADS AND EQUATIONAL THEORIES

Monad (\mathcal{M}, η, μ) in Sets

Equational Theory (Σ, E)

- Σ a signature
- E a set of equations

■ equations $t=s$
■ deductive system: equational logic

$$
\{t=s, s=u\} \vdash t=u
$$

- models: algebras $\left(A, \Sigma^{A}\right)$ satisfying the equations

MONADS AND EQUATIONAL THEORIES

Monad ($\mathcal{M}, \eta, \mu)$ in Sets

Equational Theory (Σ, E)
■ Σ a signature

- E a set of equations

(Σ, E) is a presentation of (\mathcal{M}, η, μ)

The category $\mathbf{E M}(\mathcal{M})$ of Eilenberg-Moore algebras for (\mathcal{M}, η, μ) is isomorphic to the category $\mathbf{A}(\Sigma, E)$ of algebras (models) of (Σ, E)

Category EM(M)

- objects: $(A, \alpha: \mathcal{M}(A) \rightarrow A)$ with α commuting with η, μ

■ arrows: algebra morphisms

Category $\mathbf{A}(\Sigma, E)$

- objects: models $\left(A, \Sigma^{A}\right)$ of (Σ, E)

■ arrows: homomorphisms of (Σ, E)-algebras

MONADS AND EQUATIONAL THEORIES

Monad ($\mathcal{M}, \eta, \mu)$ in Sets

Equational Theory (Σ, E)
■ Σ a signature

- E a set of equations

(Σ, E) is a presentation of (\mathcal{M}, η, μ)

The category $\mathbf{E M}(\mathcal{M})$ of Eilenberg-Moore algebras for (\mathcal{M}, η, μ) is isomorphic to the category $\mathbf{A}(\Sigma, E)$ of algebras (models) of (Σ, E)

Corollary:

$$
\mathcal{M}(X) \cong \operatorname{Terms}(X, \Sigma) / E
$$

EXAMPLE: NONDETERMINISM

Equational Theory (Σ, E)

Monad (\mathcal{M}, η, μ) in Sets
$\Longleftrightarrow \quad \Sigma$ a signature

- E a set of equations

$$
c: X \rightarrow \mathcal{P}(X)
$$

$$
c(x)=\left\{x_{1}, x_{2}\right\}
$$

$$
c\left(x_{1}\right)=\left\{x_{1}\right\}
$$

EXAMPLE: NONDETERMINISM

Monad (\mathcal{M}, η, μ) in Sets

Equational Theory (Σ, E)

■ Σ a signature

- E a set of equations

Equational theory of semilattices
■ Σ = binary operation \oplus

- axioms of $E=$

$$
\begin{array}{ccc}
(x \oplus y) \oplus z & \stackrel{(A)}{=} & x \oplus(y \oplus z) \\
x \oplus y & \stackrel{(C)}{=} & y \oplus x \\
x \oplus x & \stackrel{(1)}{=} & x
\end{array}
$$

EXAMPLE: NONDETERMINISM

Monad (\mathcal{M}, η, μ) in Sets

Equational Theory (Σ, E)

- Σ a signature
- E a set of equations

Equational theory of semilattices
■ Σ = binary operation \oplus

- axioms of $E=$

$$
\begin{array}{ccc}
(x \oplus y) \oplus z & \stackrel{(A)}{=} & x \oplus(y \oplus z) \\
x \oplus y & \stackrel{(C)}{=} & y \oplus x \\
x \oplus x & \stackrel{(1)}{=} & x
\end{array}
$$

Corollary:

$$
\mathcal{P}(X) \cong \operatorname{Terms}(X, \Sigma) / E
$$

EXAMPLE: PROBABILITY

Equational Theory (Σ, E)

Monad ($\mathcal{M}, \eta, \mu)$ in Sets

$\Leftrightarrow \quad \Sigma$ a signature

- E a set of equations

$$
\begin{aligned}
& c: X \rightarrow \mathcal{D}(X) \\
& c(x)=\frac{1}{2} x_{1}+\frac{1}{2} x_{2} \\
& c\left(x_{1}\right)=1 x_{1}
\end{aligned}
$$

EXAMPLE: PROBABILITY

Monad (\mathcal{M}, η, μ) in Sets

Equational Theory (Σ, E)

- Σ a signature
- E a set of equations

Equational theory of convex algebras

- $\Sigma=$ binary operations $+_{p}$ for all

$$
p \in(0,1)
$$

- axioms of $E=$

$$
\begin{array}{ccc}
\left(x++_{q} y\right)+_{p} z & \stackrel{\left(A_{p}\right)}{=} & x+_{p q}\left(y+\frac{p(1-q)}{1-p q} z\right) \\
x+_{p} y & \stackrel{\left(C_{p}\right)}{=} & y+_{1-p} x \\
x+_{p} x & \stackrel{\left(\rho_{p}\right)}{=} & x
\end{array}
$$

EXAMPLE: PROBABILITY

Monad (\mathcal{M}, η, μ) in Sets

Equational Theory (Σ, E)

$\Longleftrightarrow \quad$ ■ a signature

- E a set of equations

nondeterminism
probability
=
?

COMBINING NONDETERMINISM AND PROBABILITY

■ a transition reaches a set of probability distributions $\left\{\frac{1}{2} x_{1}+\frac{1}{2} x_{2}, \frac{1}{3} x_{3}+\frac{2}{3} x_{4}\right\}$

- Problem: $\mathcal{P} \circ \mathcal{D}$ is not a monad [Varacca, Winskel 2006]

COMBINING NONDETERMINISM AND PROBABILITY

For S a set of probability distributions
■ $\operatorname{conv}(S)=\left\{\sum_{i} p_{i} \cdot d_{i} \mid d_{1}, \ldots, d_{n} \in S\right.$ and $\left.\sum_{i} p_{i}=1\right\}$
■ S is convex if $S=\operatorname{conv}(S)$

COMBINING NONDETERMINISM AND PROBABILITY

For S a set of probability distributions
■ $\operatorname{conv}(S)=\left\{\sum_{i} p_{i} \cdot d_{i} \mid d_{1}, \ldots, d_{n} \in S\right.$ and $\left.\sum_{i} p_{i}=1\right\}$
■ S is convex if $S=\operatorname{conv}(S)$

+ accounts for probabilistic schedulers

THE MONAD OF CONVEX SETS OF PROBABILITY DISTRIBUTIONS

The monad (\mathcal{C}, η, μ) in Sets:
■ $\mathcal{C}: X \mapsto\{S \mid S$ is a non-empty, convex, finitely generated set of finitely supported probability distributions over $X\}$

- $\eta_{X}: X \rightarrow \mathcal{C}(X)$

$$
\eta_{X}: x \mapsto\{1 x\}
$$

- $\mu_{X}: \mathcal{C C}(X) \rightarrow \mathcal{C}(X)$

$$
\mu_{X}: \bigcup_{i}\left\{\Delta_{i}\right\} \mapsto \bigcup_{i} \operatorname{wMS}\left(\Delta_{i}\right)
$$

with WMS : $\mathcal{D C}(X) \rightarrow \mathcal{C}(X)$ the weighted Minkowski sum

$$
\operatorname{wMS}\left(\sum_{i=1}^{n} p_{i} S_{i}\right)=\left\{\sum_{i=1}^{n} p_{i} \cdot \Delta_{i} \mid \text { for each } 1 \leq i \leq n, \Delta_{i} \in S_{i}\right\}
$$

THE EQUATIONAL THEORY FOR NONDETERMINISM AND PROBABILITY

Equational Theory (Σ, E)

- Σ a signature
- E a set of equations

Equational theory of convex semilattices

- $\Sigma=\oplus$ and $+_{p}$ for all $p \in(0,1)$
- axioms E:
- axioms of semilattices
- axioms of convex algebras
- distributivity axiom (D)

$$
(x \oplus y)+_{p} z \stackrel{(D)}{=}\left(x+_{p} z\right) \oplus\left(y+_{p} z\right)
$$

[Bonchi, Sokolova, V. 2019]

THE PROOF

PROOF ROADMAP

The monad of convex sets of probability distributions is presented by the equational theory of convex semilattices

1 Unique base theorem:
Every convex set of probability distributions has a unique base
2 Prove that there is a monad isomorphism (via unique base theorem)

UNIQUE BASE THEOREM

For S a (finitely-generated) convex set of probability distributions, a base is a set $\left\{d_{1}, \ldots, d_{n}\right\}$ of distributions such that:

■ $S=\operatorname{conv}\left(\left\{d_{1}, \ldots, d_{n}\right\}\right)$
■ for all $i \in 1 \ldots n, d_{i} \notin \operatorname{conv}\left(\left\{d_{j} \mid j \neq i, 1 \leq j \leq n\right\}\right)$

Every convex set of probability distributions has a unique base

Two proofs:

- combinatorial, direct proof

■ from functional analysis, via Krein-Milman Theorem

PROOF ROADMAP

The monad of convex sets of probability distributions is presented by the equational theory of convex semilattices

1 Unique base theorem:
Every convex set of probability distributions has a unique base
2 Prove that there is a monad isomorphism (via unique base theorem)

THE MONAD ISOMORPHISM

The monad of convex sets of probability distributions is presented by
the equational theory of convex semilattices
Equivalent: $\begin{aligned} \text { Category } \mathbf{E M}(\mathcal{C}) & \simeq \quad \text { Category } \mathbf{A}(\Sigma, E) \\ \quad \operatorname{Monad} \mathcal{C} & \simeq \quad \text { Monad } T_{\Sigma_{/ E}}\end{aligned}$

THE MONAD ISOMORPHISM

The monad of convex sets of probability distributions is presented by
the equational theory of convex semilattices
Category $\mathbf{E M}(\mathcal{C}) \simeq$ Category $\mathbf{A}(\Sigma, E)$
Equivalent: Monad $\mathcal{C} \simeq$ Monad $T_{\Sigma_{/ E}}$
$=$ define a natural tranformation $\iota: T_{\Sigma_{/ E}} \Rightarrow \mathcal{C}$ such that:

- ι is a monad map
- ι is an isomorphism, i.e., it has an inverse $\kappa: \mathcal{C} \Rightarrow T_{\Sigma_{/ E}}$

THE MONAD ISOMORPHISM

The monad of convex sets of probability distributions is presented by the equational theory of convex semilattices

Category $\mathbf{E M}(\mathcal{C}) \simeq$ Category $\mathbf{A}(\Sigma, E)$
Equivalent:

$$
\text { Monad } \mathcal{C} \quad \simeq \quad \text { Monad } T_{\Sigma_{/ E}}
$$

$=$ define a natural tranformation $\iota: T_{\Sigma_{/ E}} \Rightarrow \mathcal{C}$ such that:

- ι is a monad map
- ι is an isomorphism, i.e., it has an inverse $\kappa: \mathcal{C} \Rightarrow T_{\Sigma_{/ E}}$

$$
\begin{array}{rl}
\kappa: S & S \\
\uparrow & \left\{d_{1}, \ldots, d_{n}\right\} \mapsto\left[t_{1} \oplus \ldots \oplus t_{n}\right]_{/ E} \\
\text { unique base theorem }
\end{array}
$$

CONCLUSION

The monad of convex sets of probability distributions is presented by the equational theory of convex semilattices

■ A new proof, uses the unique base theorem to obtain a normal form

- Proven useful in extending the presentation result to metric spaces and to include termination
[Mio, V. 2020][Mio, Sarkis, V. 2021]

CONCLUSION

The monad of convex sets of probability distributions is presented by the equational theory of convex semilattices

■ A new proof, uses the unique base theorem to obtain a normal form

■ Proven useful in extending the presentation result to metric spaces and to include termination
[Mio, V. 2020][Mio, Sarkis, V. 2021]

