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MONADS AND EQUATIONAL THEORIES FOR
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MONADS AND EQUATIONAL THEORIES

Monad (M, 1, 1)
in Sets

m functor M : X — M(X)
m unit 7y X — M(X)
m multiplication px : MM(X) — M(X)

M M M
MX —2 o M2 <1 MX M3X —E2 5 M

~_p = I

MY ——— MX



MONADS AND EQUATIONAL THEORIES

Equational Theory (X, E)
Monad (M, 7, 1)

in Sets

2 asignature

E a set of equations

m equations t=s

deductive system: equational logic
{t=s,s=u}bt=u
models: algebras (A, ¥*) satisfying

the equations



MONADS AND EQUATIONAL THEORIES

Equational Theory (X, E)
Monad (M, 7, 1)

. < ® X asignature
In Sets

m E a set of equations

(X, E) is a presentation of (M, 7, ;1)

The category EM(,M) of Eilenberg-Moore algebras for (M, n, u) is
isomorphic to the category A(X, E) of algebras (models) of (X, E)

Category EM(M) Category A(X%, E)
m objects: (A, : M(A) — A) m objects: models (A, ¥*) of (X, E)
with o commuting with 7, 14 m arrows: homomorphisms of

m arrows: algebra morphisms (X, E)-algebras



MONADS AND EQUATIONAL THEORIES

Equational Theory (X, E)
Monad (M, 7, 1)

. < m X asignature
In Sets

m E a set of equations

(X, E) is a presentation of (M, 7, ;1)

The category EM(,M) of Eilenberg-Moore algebras for (M, n, u) is
isomorphic to the category A(X, E) of algebras (models) of (X, E)
Corollary:

M(X) = Terms(X, X)/.



Equational Theory (X, E)
Monad (M, 7, 1)

. < m X asignature
In Sets

m E a set of equations

X c: X— P(X)
/ \ c(x) = {x1, %}
X1 X2 c(x) = {x}
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. < m X asignature
In Sets

m E a set of equations
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P(x) = Terms(X, )/



EXAMPLE: PROBABILITY

Equational Theory (X, E)

Monad (M, 7, 1) < m X asignature

in Sets )
m E a set of equations

c: X —D(X)
c(X) =X+ 3%

1 -

2 c(x1) = 1x

A

X

=




EXAMPLE: PROBABILITY

Equational Theory (X, E)
Monad (M, 7, 1)

. < ®m X asignature
In Sets

m E a set of equations

Distribution monad (D, 7, 1) Equational theory of convex algebras

mD:X— {A|Aisa m > = binary operations +, for all
finitely supported pe(01)

probability distribution <« ™ axioms of E(= )
Ap

on X} (X+q¥)tpz = X+pg (V¥ +pu 2)
1=pq
B X—1X X+py (C:p) Y trp X
Wil Y pic A S (o) .



EXAMPLE: PROBABILITY

Equational Theory (X, E)
Monad (M, 7, 1)

. < m X asignature
In Sets

m E a set of equations

nondeterminism
+

probability
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COMBINING NONDETERMINISM AND PROBABILITY

m a transition reaches a set of
probability distributions
{ %X1 + %X27 %X3 + %Xz,}

m Problem: P o D is not a monad

X

AR SIEN




COMBINING NONDETERMINISM AND PROBABILITY

m a transition reaches a set of
probability distributions
{ %X1 + %X27 %X3 + §X4}

m Problem: P o D is not a monad

Solution: use
convex sets of probability distributions

X6

For S a set of probability distributions
m conv(S) ={> ;pi-di|di,...dn €Sand ) ;pi =1}

m Sis convex if S = conv(S)



COMBINING NONDETERMINISM AND PROBABILITY

m a transition reaches a set of
probability distributions
{ %X1 + %X27 %X3 + §X4}

m Problem: P o D is not a monad

Solution: use
convex sets of probability distributions

X6

For S a set of probability distributions
m conv(S) ={> ;pi-di|di,...dn €Sand ) ;pi =1}
m Sis convex if S = conv(S)

+ accounts for probabilistic schedulers



THE MONAD OF CONVEX SETS OF PROBABILITY DISTRIBUTIONS

The monad (C, ), i) in Sets:

m C : X — {S| Sis anon-empty, convex, finitely generated
set of finitely supported probability distributions over X}

m oy X — C(X)
nx o x— {1x}

m uy : CC(X) — C(X)
xc (J{Ai} = | Jwms(A))
i i
with WMS : DC(X) — C(X) the weighted Minkowski sum

n n
WMS(Z piSi) = {Z pi- Aj | foreach1 <i<n, A; €5}
i=1

i=1



THE EQUATIONAL THEORY FOR NONDETERMINISM AND PROBABILITY

Equational Theory (X, E)

Monad (M, 777/~L) <> m X asignature

in Sets )
m E a set of equations
Equational theory of convex semilattices
m Y =®and +, forallp € (0,1)
Convex sets (non-empty) S e E -
of distributions =

m axioms of semilattices
monad (C, 7, 1) m axioms of convex algebras
m distributivity axiom (D)

D
X®Y) +p2 2 (x+p2) @ (v +52)



THE PROOF



The monad of convex sets of probability distributions
is presented by
the equational theory of convex semilattices

Unique base theorem:

Every convex set of probability distributions has a unique base
Prove that there is a monad isomorphism

(via unique base theorem)



UNIQUE BASE THEOREM

For S a (finitely-generated) convex set of probability distributions,
a base is a set {d, ..., d} of distributions such that:

m S =conv({ds,...,dn})
m forallie€1...n, dj ¢ conv({dj|j #i,1<j<n})

Every convex set of probability distributions has a unique base
Two proofs:

m combinatorial, direct proof

m from functional analysis, via Krein-Milman Theorem

10



The monad of convex sets of probability distributions
is presented by
the equational theory of convex semilattices

Unique base theorem:
Every convex set of probability distributions has a unique base

Prove that there is a monad isomorphism
(via unique base theorem)

1"



THE MONAD ISOMORPHISM

The monad of convex sets of probability distributions
is presented by
the equational theory of convex semilattices

Category EM(C) ~ Category A(X, E)

Equivalent: Monad C

2

Monad TZ/E

12



THE MONAD ISOMORPHISM

The monad of convex sets of probability distributions
is presented by
the equational theory of convex semilattices

Category EM(C) ~ Category A(X, E)

Equivalent: Monad C ~

Monad TZ/E
= define a natural tranformation ¢: Ty, = C such that:

m ¢ is a monad map

m ¢ is an isomorphism, i.e, it has an inverse k: C = T):/E
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THE MONAD ISOMORPHISM

The monad of convex sets of probability distributions
is presented by
the equational theory of convex semilattices

Category EM(C) ~ Category A(X, E)

Equivalent: Monad C ~

Monad TZ/E
= define a natural tranformation ¢: Ty, = C such that:

m ¢ is a monad map

m ¢ is an isomorphism, i.e, it has an inverse k: C = T):/E
K:S{dy,..,dn} = [t D ... ©tal

unique base theorem
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CONCLUSION

The monad of convex sets of probability distributions
is presented by
the equational theory of convex semilattices

m A new proof, uses the unique base theorem to obtain a normal
form

m Proven useful in extending the presentation result to metric
spaces and to include termination
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CONCLUSION

The monad of convex sets of probability distributions
is presented by
the equational theory of convex semilattices

m A new proof, uses the unique base theorem to obtain a normal
form

m Proven useful in extending the presentation result to metric
spaces and to include termination

Thank you!
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