PRESENTING CONVEX SETS OF PROBABILITY DISTRIBUTIONS BY CONVEX SEMILATTICES AND UNIQUE BASES

Filippo Bonchi¹ Ana Sokolova² Valeria Vignudelli³

¹University of Pisa, Italy

²University of Salzburg, Austria

³CNRS/ENS Lyon, France

modelling of nondeterministic+probabilistic programs

The monad of convex sets of probability distributions is presented by the equational theory of convex semilattices

equational reasoning on nondeterministic+probabilistic programs

modelling of nondeterministic+probabilistic programs

The monad of convex sets of probability distributions is presented by the equational theory of convex semilattices

equational reasoning on nondeterministic+probabilistic programs

[Bonchi, Sokolova, V. LICS 2019] + verification of trace equivalence

Monads and Equational Theories for Nondeterminism and Probability

Monad (\mathcal{M},η,μ) in Sets

- functor $\mathcal{M} : X \mapsto \mathcal{M}(X)$
- unit $\eta_X : X \to \mathcal{M}(X)$
- multiplication $\mu_X : \mathcal{MM}(X) \to \mathcal{M}(X)$

MONADS AND EQUATIONAL THEORIES

Monad (\mathcal{M}, η, μ) in Sets Equational Theory (Σ, E)

- Σ a signature
- E a set of equations

- equations t = s
- deductive system: equational logic $\{t = s, s = u\} \vdash t = u$
- models: algebras (A, ∑^A) satisfying the equations

MONADS AND EQUATIONAL THEORIES

Monad
$$(\mathcal{M}, \eta, \mu)$$

in Sets Σ a signature E a set of equations

 (Σ, E) is a presentation of (\mathcal{M}, η, μ)

The category **EM**(\mathcal{M}) of Eilenberg-Moore algebras for (\mathcal{M}, η, μ) is isomorphic to the category **A**(Σ, E) of algebras (models) of (Σ, E)

Category $\mathbf{EM}(\mathcal{M})$

- objects: $(A, \alpha : \mathcal{M}(A) \to A)$ with α commuting with η, μ
- arrows: algebra morphisms

Category $\mathbf{A}(\Sigma, E)$

- objects: models (A, Σ^A) of (Σ, E)
- arrows: homomorphisms of
 (Σ, E)-algebras

MONADS AND EQUATIONAL THEORIES

Monad
$$(\mathcal{M}, \eta, \mu)$$

in Sets Σ a signature E a set of equations

 (Σ, E) is a presentation of (\mathcal{M}, η, μ)

The category **EM**(\mathcal{M}) of Eilenberg-Moore algebras for (\mathcal{M}, η, μ) is isomorphic to the category **A**(Σ, E) of algebras (models) of (Σ, E)

 $\begin{array}{l} \mathsf{Corollary:}\\ \mathcal{M}(X)\cong \mathsf{\mathit{Terms}}(X,\Sigma)_{\!\!/_E} \end{array}$

EXAMPLE: NONDETERMINISM

Monad (\mathcal{M}, η, μ) in Sets Equational Theory (Σ, E)

- \Leftrightarrow **\Sigma** a signature
 - E a set of equations

$$c: X \to \mathcal{P}(X)$$

$$c(x) = \{x_1, x_2\}$$

 $c(x_1) = \{x_1\}$

•••

EXAMPLE: NONDETERMINISM

Monad (\mathcal{M},η,μ) in Sets

 \Leftrightarrow **\Sigma** a signature

• E a set of equations

Powerset (non-empty) monad (\mathcal{P}, η, μ)

- $\mathcal{P}: X \mapsto \{S \mid S \text{ is a non-} empty, finite subset of } X\}$
- $\blacksquare \eta : \mathbf{x} \mapsto \{\mathbf{x}\}$

$$\blacksquare \ \mu : \{\mathsf{S}_1, ..., \mathsf{S}_n\} \mapsto \bigcup_i \mathsf{S}_i$$

Equational theory of semilattices

Equational Theory (Σ, E)

• Σ = binary operation \oplus

axioms of E =

$$(x \oplus y) \oplus z \stackrel{(A)}{=} x \oplus (y \oplus z)$$
$$x \oplus y \stackrel{(C)}{=} y \oplus x$$
$$x \oplus x \stackrel{(I)}{=} x$$

EXAMPLE: NONDETERMINISM

Monad (\mathcal{M}, η, μ) in Sets \Leftrightarrow **\Sigma** a signature

• E a set of equations

Powerset (non-empty) monad (\mathcal{P}, η, μ)

• $\mathcal{P} : X \mapsto \{S \mid S \text{ is a non-} empty, finite subset of } X\}$

$$\eta : \mathbf{x} \mapsto \{\mathbf{x}\}$$

$$\blacksquare \mu : \{\mathsf{S}_1, ..., \mathsf{S}_n\} \mapsto \bigcup_i \mathsf{S}_i$$

Equational theory of semilattices

Equational Theory (Σ, E)

• Σ = binary operation \oplus

axioms of E =

$$(x \oplus y) \oplus z \stackrel{(A)}{=} x \oplus (y \oplus z)$$
$$x \oplus y \stackrel{(C)}{=} y \oplus x$$
$$x \oplus x \stackrel{(I)}{=} x$$

Corollary: $\mathcal{P}(X) \cong Terms(X, \Sigma)_{/_E}$

EXAMPLE: PROBABILITY

Monad (\mathcal{M}, η, μ) in Sets Equational Theory (Σ, E)

- \Leftrightarrow **\Sigma** a signature
 - E a set of equations

$$c: X \to \mathcal{D}(X)$$
$$c(x) = \frac{1}{2}x_1 + \frac{1}{2}x_2$$
$$c(x_1) = 1x_1$$

•••

EXAMPLE: PROBABILITY

Monad (\mathcal{M}, η, μ) in Sets \Leftrightarrow

Equational Theory (Σ, E)

- Σ a signature
- E a set of equations

Distribution monad (\mathcal{D}, η, μ)

• $\mathcal{D} : X \mapsto \{\Delta \mid \Delta \text{ is a }$

finitely supported
probability distribution
on X}

 $\blacksquare \ \eta: \mathbf{X} \mapsto \mathbf{1}\mathbf{X}$

• $\mu : \sum_{i} p_i \Delta_i \mapsto \sum_{i} p_i \cdot \Delta_i$

Equational theory of convex algebras $\Sigma = \text{binary operations} +_p \text{ for all}$ $p \in (0, 1)$ $axioms of E = (x +_q y) +_p z \xrightarrow{(A_p)} x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z)$ $x +_p y \xrightarrow{(C_p)} y +_{1-p} x$ $x +_p x \xrightarrow{(I_p)} x$

EXAMPLE: PROBABILITY

Monad (\mathcal{M}, η, μ) in Sets Equational Theory (Σ, E)

- \Leftrightarrow **\Sigma** a signature
 - E a set of equations

COMBINING NONDETERMINISM AND PROBABILITY

- a transition reaches a set of probability distributions { ¹/₂x₁ + ¹/₂x₂, ¹/₃x₃ + ²/₃x₄ }
- Problem: P ∘ D is not a monad [Varacca, Winskel 2006]

COMBINING NONDETERMINISM AND PROBABILITY

- a transition reaches a set of probability distributions { ¹/₂x₁ + ¹/₂x₂, ¹/₃x₃ + ²/₃x₄ }
- Problem: P ∘ D is not a monad [Varacca, Winskel 2006]

Solution: use

convex sets of probability distributions

For S a set of probability distributions

•
$$conv(S) = \{\sum_i p_i \cdot d_i \mid d_1, ..., d_n \in S \text{ and } \sum_i p_i = 1\}$$

• S is convex if S = conv(S)

COMBINING NONDETERMINISM AND PROBABILITY

- a transition reaches a set of probability distributions $\left\{\frac{1}{2}x_1 + \frac{1}{2}x_2, \frac{1}{3}x_3 + \frac{2}{3}x_4\right\}$
- Problem: P ∘ D is not a monad [Varacca, Winskel 2006]

Solution: use

convex sets of probability distributions

For S a set of probability distributions

•
$$conv(S) = \{\sum_i p_i \cdot d_i \mid d_1, ..., d_n \in S \text{ and } \sum_i p_i = 1\}$$

• S is convex if S = conv(S)

+ accounts for probabilistic schedulers

The monad (\mathcal{C}, η, μ) in Sets:

■ C : X → {S | S is a non-empty, convex, finitely generated set of finitely supported probability distributions over X}

■
$$\eta_X : X \to C(X)$$

 $\eta_X : x \mapsto \{ \ \mathbf{1}x \}$
■ $\mu_X : CC(X) \to C(X)$

$$\mu_{\mathsf{X}}:\bigcup_{i}\{\Delta_{i}\}\mapsto\bigcup_{i}\mathsf{WMS}(\Delta_{i})$$

with WMS : $\mathcal{DC}(X) \to \mathcal{C}(X)$ the weighted Minkowski sum

$$\mathsf{WMS}(\sum_{i=1}^n p_i S_i) = \{\sum_{i=1}^n p_i \cdot \Delta_i \mid \text{for each } 1 \le i \le n, \Delta_i \in S_i\}$$

[Jacobs 2008 ...]

THE EQUATIONAL THEORY FOR NONDETERMINISM AND PROBABILITY

 \Leftrightarrow

Monad (\mathcal{M}, η, μ) in Sets Equational Theory (Σ, E)

- 👄 🛛 Ε Σ a signature
 - E a set of equations

Convex sets (non-empty) of distributions monad (\mathcal{C}, η, μ) Equational theory of convex semilattices

- $\Sigma = \oplus$ and $+_p$ for all $p \in (0, 1)$
- axioms E :
 - axioms of semilattices
 - axioms of convex algebras
 - distributivity axiom (D) $(x \oplus y) +_p z \stackrel{(D)}{=} (x +_p z) \oplus (y +_p z)$

[Bonchi, Sokolova, V. 2019]

THE PROOF

1 Unique base theorem:

Every convex set of probability distributions has a unique base

Prove that there is a monad isomorphism (via unique base theorem) For S a (finitely-generated) convex set of probability distributions, a base is a set $\{d_1, ..., d_n\}$ of distributions such that:

•
$$S = conv(\{d_1, ..., d_n\})$$

• for all $i \in 1...n$, $d_i \notin conv(\{d_j \mid j \neq i, 1 \leq j \leq n\})$

Every convex set of probability distributions has a unique base

Two proofs:

- combinatorial, direct proof
- from functional analysis, via Krein-Milman Theorem

1 Unique base theorem:

Every convex set of probability distributions has a unique base

 Prove that there is a monad isomorphism (via unique base theorem)

Category $\mathbf{EM}(\mathcal{C}) \simeq Category \mathbf{A}(\Sigma, E)$

Equivalent: Monad $C \simeq$ Monad $T_{\Sigma_{/E}}$

 $\mathsf{Category} \, \mathsf{EM}(\mathcal{C}) \qquad \simeq \qquad \mathsf{Category} \, \mathsf{A}(\Sigma, E)$

Equivalent: Monad \mathcal{C} \simeq Monad $\mathcal{T}_{\Sigma_{/E}}$

= define a natural tranformation $\iota \colon T_{\Sigma_{/E}} \Rightarrow \mathcal{C}$ such that:

 \bullet *i* is a monad map

• ι is an isomorphism, i.e., it has an inverse $\kappa \colon \mathcal{C} \Rightarrow T_{\Sigma_{/E}}$

Category $extsf{EM}(\mathcal{C}) ~~\simeq~~$ Category $extsf{A}(\Sigma, extsf{E})$

Equivalent: Monad \mathcal{C} \simeq Monad $\mathcal{T}_{\Sigma_{/E}}$

= define a natural tranformation $\iota\colon T_{\Sigma_{/E}}\Rightarrow \mathcal{C}$ such that:

 \bullet *i* is a monad map

• ι is an isomorphism, i.e., it has an inverse $\kappa \colon \mathcal{C} \Rightarrow T_{\Sigma_{/E}}$

$$\kappa: \mathsf{S} \mapsto \{d_1, ..., d_n\} \mapsto [t_1 \oplus ... \oplus t_n]_{/E}$$

$$\uparrow$$
unique base theorem

- A new proof, uses the unique base theorem to obtain a normal form
- Proven useful in extending the presentation result to metric spaces and to include termination
 [Mio, V. 2020][Mio, Sarkis, V. 2021]

- A new proof, uses the unique base theorem to obtain a normal form
- Proven useful in extending the presentation result to metric spaces and to include termination
 [Mio, V. 2020][Mio, Sarkis, V. 2021]

Thank you!