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Introduction Commutative Monads of Valuations

Motivation

• Probability and recursion are important computational effects.
• Domain Theory – staple of denotational study of recursion.
• Adding probability to domain-theoretic approach has been difficult.
• Canonical approach: Kleisli category of the valuations monad V [1].
• Two major open problems unsolved since 1989.
• Related work: probabilistic coherence spaces, quasi-Borel spaces, cones, etc.
• Recent work: Three commutative submonads of V, soundness and (strong)

adequacy for discrete probabilistic choice [2].
• This talk: A commutative submonad of V for (continuous?) probabilistic choice.

[1] Jones and Plotkin. "A probabilistic powerdomain of evaluations." LICS 1989.
[2] Jia, Lindenhovius, Mislove, Z. "Commutative Monads for Probabilistic Programming

Languages" LICS 2021.
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Background: Domain Theory (Dcpo’s)
• Domain theory provides an order-theoretic view of computation and recursion.
• Two main classes of objects in domain theory: dcpo’s and domains.
• A nonempty subset A of a poset D is directed if each pair of elements in A has an

upper bound in A.
• A directed-complete partial order (dcpo) is a poset in which every directed subset

A has a supremum supA.
• Example: the unit interval [0, 1] is a dcpo in the usual ordering.
• Example: the open sets of a topological space in the inclusion order.

• A function f : D → E between two dcpo’s is Scott-continuous if it is monotone
and preserves suprema of directed subsets.
• The category DCPO of dcpo’s and Scott-continuous functions is cartesian closed,

complete and cocomplete.
• The category DCPO is very important for denotational semantics.
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Background: Domain Theory (Domains)

• A domain, also known as a continuous dcpo, is a dcpo equipped with a notion of
approximation (details omitted).
• Domains may be thought of as very well-behaved dcpo’s.
• The category of domains and Scott-continuous maps is denoted by DOM.
• Problem: The category DOM is not cartesian closed.
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Background: Domain Theory (Scott Topology)

• The order on a dcpo X induces a canonical topology σX , called the
Scott-topology.
• The Scott topology σD on a dcpo D consists of the upper subsets
U = ↑U = {x ∈ D | ∃u ∈ U. u ≤ x} that are inaccessible by directed suprema:
i.e., if A ⊆ D is directed and supA ∈ U, then A ∩ U 6= ∅.
• The topological space (D, σD) is also written as ΣD.
• f : X → Y is Scott-continuous iff f is continuous w.r.t. ΣX and ΣY .
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Background: Probability and Recursion

• How to talk about recursion and probability?
• Why not just take Meas(X ), the set of subprobability measures on the Borel
σ-algebra induced by the Scott-topology of a dcpo X?
• Because it is unclear how to extend the assignment Meas(−) to a monad over
DCPO.
• A monadic semantics over DCPO seems very unlikely with this approach.
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Background: Valuations

• The domain-theoretic approach to probability is based on valuations [1].
• A subprobability valuation on a dcpo X is a Scott-continuous map ν : σX → [0, 1],

which is strict (ν(∅) = 0) and modular (ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V )).
• Example: The always-zero valuation 0.
• Example: For x ∈ X , δx is defined as δx(U) = 1 if x ∈ U and δx(U) = 0 otherwise.

• The set of subprobability valuations on a dcpo X , denoted VX , is a pointed dcpo
in the stochastic order: ν1 ≤ ν2 iff ∀U ∈ σX .ν1(U) ≤ ν2(U).
• Remark: Valuations are similar to Borel measures and in some cases coincide.

[1] Jones and Plotkin. "A probabilistic powerdomain of evaluations." LICS 1989.
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Background: Valuations Monad

• The assignment V(−) can be equipped with the structure of a strong monad.
• Given h : D → E , define V(h) : VD → VE :: ν 7→ λU.ν(h−1(U)).
• The unit of V is given by ηD : D → VD :: x 7→ δx .
• A notion of integration can be defined. Given ν ∈ VX and f : X → [0, 1]

Scott-continuous, we can define the integral of f against ν by:∫
x∈X

f (x)dν
def
=

∫ 1

0
ν(f −1((t, 1]))dt.

• The multiplication is given by µD : VVD → VD :: $ 7→ λU.
∫
ν∈VD ν(U)d$.

• The strength is τDE : D × VE → V(D × E ) :: (x , ν) 7→ λU.
∫
y∈E χU(x , y)dν.
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Background: Problems of the Valuations Monad

• The monad V is strong on DCPO and commutative on DOM [3].
• Two major open problems since 1989:

• Problem: Is V a commutative monad on DCPO?
• Problem (Jung-Tix): Find a cartesian closed category of domains on which V is a

commutative monad.

• Having a domain-theoretic model with a commutative valuations monad over a
cartesian closed category is important for the semantics. Do they exist?
• Yes [2]. We use topological methods to construct commutative submonads of V.

• We have shown our monads are suitable for discrete probabilistic choice.

[2] Jia, Lindenhovius, Mislove, Z. "Commutative Monads for Probabilistic Programming
Languages" LICS 2021.

[3] Jones. Probabilistic non-determinism. PhD Thesis, University of Edinburgh, 1990.
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Background: Discrete vs Continuous Probabilistic Choice
• A programming language with discrete probabilistic choice:

• A term M can reduce to countably many values.
• P(M →∗ V ) is the probability that term M reduces to value V (operational notion).
• In the denotational semantics, strong adequacy is the statement:

JMK =
∑

V∈Val(M)

P(M →∗ V )JV K (1.1)

• A programming language with continuous probabilistic choice:
• A term M can reduce to uncountably many values.
• P(M →∗ −) is a subprobability measure determined by the operational semantics.
• In the denotational semantics, strong adequacy is the statement:

JMK =

∫
V∈Val(M)

JV Kd P(M →∗ V ) (1.2)

• Our LICS’21 monads are strongly adequate for discrete probabilistic choice.
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Fubini ⇐⇒ Commutativity of V

• Commutativity of the monad V is equivalent to showing the Fubini-style equation∫
x∈D

∫
y∈E

χU(x , y)dξdν =

∫
y∈E

∫
x∈D

χU(x , y)dνdξ

for dcpo’s D and E , for U ∈ σ(D × E ) and for ν ∈ VD, ξ ∈ VE .
• This equation is known to hold if D or E is a domain.

• This is why V is commutative on DOM.

• This equation is known to hold if ν or ξ is a point-continuous valuation.
• This is why our monad P (LICS’21) is a commutative submonad of V.

• We use topological methods to define and show that our LICS’21 monads are
commutative submonads of V.
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The Central Valuations Monad
• The main idea behind our new commutative submonad is algebraic.

• Recall that the centre of a group is always an abelian subgroup.
• Recall that the centre of a premonoidal category is always a monoidal subcategory.

• Definition: A subprobability valuation ν on a dcpo D is called a central valuation
if for any dcpo E , any valuation µ on E , and any Scott-continuous function
h : D × E → [0, 1], we have∫

x∈D

∫
y∈E

h(x , y)dµdν =

∫
y∈E

∫
x∈D

h(x , y)dνdµ.

• We write ZD for the set of all central valuations on a dcpo D.
• Theorem: The assignment Z(−) extends to a commutative monad over the

category DCPO when equipped with the (co)restricted monad operations of V. In
other words, Z is a commutative submonad of V.
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How large is the Central Valuations Monad?

• All of our monads from [2] are submonads of Z. For every dcpo D :

SD ⊆MD ⊆ WD ⊆ PD ⊆ ZD ⊆ VD.

• Z is large enough for discrete probabilistic choice.
• Z is the largest commutative submonad of V known so far.
• Z = V iff V is commutative on DCPO (open problem for 32 years).
• Theorem: Let f : [0, 1]→ D be a lower semi-continuous map into a dcpo D. If ν

is any valuation on [0, 1], then f∗(ν)
def
= λO ∈ σD.ν(f −1(O)) is in ZD.

• We have not been able to prove this theorem forM,W or P.
• Work-in-progress: Is Z large enough for continuous probabilistic choice?

[2] Jia, Lindenhovius, Mislove, Z. LICS 2021.
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Thank you for your attention!
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