Monads on Categories of Relational Structures

Chase Ford: chase.ford@fau.de joint work with Stefan Milius and Lutz Schröder

Friedrich-Alexander-Universität Erlangen-Nürnberg

9th Conference on Algebra and Coalgebra in Computer Science, CALCO 2021

Motivation

- (Moggi, 1991): Monads *are* computational effects
 - $\,\vartriangleright\,$ categorical semantics via Kleisli presentations
 - \triangleright (probabilistic) nondeterminism, exceptions, continuations, etc.
- (Plotkin/Power, 2001): effects via equations and operations
 - $\,\vartriangleright\,$ rather general account for presenting computational effects
 - \triangleright computational effects *are* monads
 - \triangleright (Linton, 1966): monads on Set = equational theories
- Recent syntactic-minded approaches to bases beyond Set:
 - \triangleright (Adámek/Ford/Milius/Schröder, 2020):
 - inequational theories = monads on Pos
 - \triangleright (Mardare/Panangaden/Plotkin, 2016):

quantitative algebraic theories (for monads on Met)

 ${\bf Core:}$ universal algebra for monads on categories of relational structures

Contributions

- **Presentations of monads** on model categories of infinitary Horn theories via relational theories
- **2** Relational Logic: sequent calculus for relational algebraic reasoning

Horn Theories and Categories of Relational Structures

Claim

Horn theories balance expressive power with 'nice' categorical structure.

- for instance, there are infinitary Horn theories for
 - ▷ Par: partial algebras and homomorphisms
 - ▷ Pos: partially ordered sets and monotone maps
 - \triangleright Met: 1-bounded metric spaces and non-expansive maps
- Particulars: categories $\mathsf{Str}(\Pi, \mathcal{A})$ of Π -structures for
 - $\,\triangleright\,$ a finitary (single-sorted) relational signature Π
 - \triangleright specified by a set \mathcal{A} of infinitary Horn sentences:

$$\forall x. \ \bigwedge_{i \in I} \alpha_i(\bar{x}_i) \implies \beta(\bar{x}_\beta)$$

where $\alpha_i \in \Pi$ and $\beta \in \Pi \sqcup \{=\}$.

 $\,\triangleright\,$ Morphisms: relation-preserving maps

Horn theories

Horn theory for Pos

- signature: a single binary symbol \leq
- axioms:

$$\implies x \leq x \qquad \{x \leq y, y \leq z\} \implies x \leq y \qquad \{x \leq y, y \leq z\} \implies x = y$$

Unlike Pos, Met includes an infinitary axiom:

$$\{x =_{\epsilon'} y \mid \epsilon' > \epsilon\} \implies x =_{\epsilon} y \qquad (Arch)$$

Arity of a Horn theory

The Horn theory (Π, \mathcal{A}) is λ -ary if $card\Phi < \lambda$ for all $\Phi \implies \psi \in \mathcal{A}$.

Proposition

Given a λ -ary Horn theory (Π, \mathcal{A}) , $\mathsf{Str}(\Pi, \mathcal{A})$ is a full reflective subcategory of $\mathsf{Str}(\Pi)$ closed under λ -directed colimits.

In particular:

• The inclusion $\mathsf{Str}(\Pi,\mathcal{A}) \hookrightarrow \mathsf{Str}(\Pi)$ has a left adjoint

$$\mathsf{Str}(\Pi) \xrightarrow{R} \mathsf{Str}(\Pi, \mathcal{A})$$
 (the *reflector*)

• $\mathsf{Str}(\Pi, \mathcal{A})$ is (co)complete and locally λ -presentable

 $\triangleright X \lambda$ -presentable if $card X < \lambda$ and X is λ -generated

Key ingredient II: closed structure

• Tensor:
$$\otimes$$
: $\mathsf{Str}(\Pi) \times \mathsf{Str}(\Pi) \to \mathsf{Str}(\Pi)$

- \triangleright carrier: the product $X_0 \times X_1$
- \triangleright relations: for $f: \operatorname{ar}(\alpha) \to X_0 \times X_1$,

 $X_0 \otimes X_1 \models \alpha(f) :\iff \exists i \in \{0,1\}.\pi_i \cdot f \text{ is constant and } X_{i+1} \models \pi_{i+1} \cdot f$

• Internal hom
$$[-, -]$$
 of $X, Y \in \mathsf{Str}(\Pi)$:

- \triangleright carrier: $Str(\Pi)(X,Y)$
- ▷ **relations**: point-wise structure on maps

Proposition

Let (Π, \mathcal{A}) be a λ -ary Horn theory. Then

 $(\mathsf{Str}(\Pi,\mathcal{A}), R\cdot\otimes, RI)$

is locally λ -presentable as a symmetric monoidal closed category.

...so [X, -] is λ -accessible for λ -presentable X

Presentations of Monads on Categories of Horn Models

Algebras over Horn models

Assumption

 $\mathscr{C} := \mathsf{Str}\mathscr{H}$ for a λ -ary Horn theory $\mathscr{H} = (\Pi, \mathcal{A})$, and $\kappa \leq \lambda$

- κ -ary signature Σ :
 - \triangleright the arity of $\sigma \in \Sigma$, $\operatorname{ar}(\sigma)$, is an internally κ -presentable object
- We have a category of Σ -algebras, Alg Σ :
 - \triangleright objects: Σ -algebras
 - a ${\mathscr C}\text{-object}\;A$ equipped with ${\mathscr C}\text{-morphisms}$

$$\sigma_A \colon [\mathsf{ar}(\sigma), A] \to A \qquad (\sigma \in \Sigma)$$

 \triangleright morphisms: homomorphisms \mathscr{C} -morphism $A \to B$ making the following commute for all $\sigma \in \Sigma$:

$$\begin{bmatrix} \mathsf{ar}(\sigma), A \end{bmatrix} \xrightarrow{\sigma_A} A$$
$$h \cdot (-) \downarrow \qquad \qquad \qquad \downarrow h$$
$$\begin{bmatrix} \mathsf{ar}(\sigma), B \end{bmatrix} \xrightarrow{\sigma_B} B$$

κ -ary relational algebraic Σ -theory

Specified by a set \mathcal{E} of Σ -relations: expressions $X \vdash \alpha(f)$ where

- X is a κ -presentable object
- $\alpha \in \Pi$, and
- f is a function $\operatorname{ar}(\alpha) \to T_{\Sigma}(X)$ (= Σ -terms over |X|, defined as usual)

Example: $\mathscr{C} = \mathsf{Pos}$

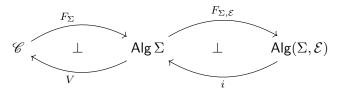
- Signature: a unary operation ξ
- Axiom:

$$\{x\} \vdash x \le \xi(x)$$

Theorem

There is a translation of each κ -ary relational algebraic theory into a κ -accessible enriched monad on Str \mathcal{H} , preserving categories of models.

- Proof idea:
 - $\,\vartriangleright\,$ Σ has a presentation as a $\kappa\text{-accessible functor}$
 - $\triangleright \operatorname{\mathsf{Alg}}(\Sigma, \mathcal{E})$ is a reflective subcategory of $\operatorname{\mathsf{Alg}}\Sigma$
 - $\,\vartriangleright\,$ preservation of models: Beck's monadicity theorem



The ensuing monad is the *free-algebra monad* of (Σ, \mathcal{E})

Monad-to-theory translation

Every λ -accessible monad $T: \mathsf{Str}\mathscr{H} \to \mathsf{Str}\mathscr{H}$ induces relational algebraic theory \mathbb{T} described as follows:

- $\Sigma := \bigsqcup_{\Gamma \in \mathscr{P}_{\lambda}} |T\Gamma|$
- \mathbb{T} includes all axioms of the following shapes, where $\Gamma \in \mathscr{P}_{\lambda}$:

(1) $\Gamma \vdash \alpha(\sigma_i)$ for all $\sigma_i \in T\Gamma$ such that $T\Gamma \models \alpha(\sigma_i)$

- (2) $\Gamma \vdash f^*(\sigma) = \sigma(f)$ for all $\sigma \in \Sigma$ and all morphisms $f : \operatorname{ar}(\sigma) \to T\Gamma$
- (3) $\Gamma \vdash \eta_{\Gamma}(x) = x$ for all $x \in \Gamma$

$$f^* := TX \xrightarrow{Tf} TTY \xrightarrow{\mu_Y} TY \text{ for } f \in \mathscr{C}(X, TY)$$

Proposition

Each enriched λ -accessible monad T is the free-algebra monad of its associated relational algebraic theory.

Relational Logic and a Construction of Free Algebras Sound/complete sequent calculus for relational reasoning:

 $X \vdash \downarrow t \pmod{(\text{"definedness"})} \quad X \vdash \alpha(t_1, \dots, t_{\mathsf{ar}(\alpha)}) \pmod{(\text{"relational"})}$

• "elimination rule for arity conditions" concludes definedness of operations:

$$(\mathsf{E}\operatorname{\mathsf{-Ar}}) \ \frac{\{X \vdash \alpha(f \cdot g) \mid \mathsf{ar}(\sigma) \models \alpha(g)\} \cup \{X \vdash \downarrow f(i) \mid i \in \mathsf{ar}(\sigma)\}}{X \vdash \downarrow \sigma(f)}$$

 $\vartriangleright \text{ map types: } \mathsf{ar}(\alpha) \xrightarrow{g} \mathsf{ar}(\sigma) \xrightarrow{f} T_{\Sigma}(X)$

• (general) substitution, cut, subterm and "arity" rules all admissible

Theorem

 $X \vdash \alpha(f)$ is derivable iff every $A \in \mathsf{Alg}(\Sigma, \mathcal{E})$ satisfies $X \vdash \alpha(f)$.

Construction of Free Algebras

Construction of free (Σ, \mathcal{E}) -algebras, briefly

For a \mathscr{H} -model X, the free (Σ, \mathcal{E}) -algebra • Step 1: form the Π -structure $\mathscr{T}_{\mathcal{E}}(X)$ with

- \triangleright carrier: terms $t \in T_{\Sigma}(X)$ such that $X \vdash \downarrow t$ derivable
- \triangleright relations: $\alpha(t_i) :\iff X \vdash \alpha(t_i)$ is derivable
- Step 2: form the quotient of $\mathscr{T}_{\mathcal{E}}(X)$ by 'derivable equality'

 \triangleright this quotient admits the structure of a \mathscr{H} -model (!)

Theorem

For all $X \in \mathsf{Str}\mathscr{H}$, $\mathscr{T}_{\mathcal{E}}(X)$ carries the structure of a Σ -algebra with the universal property of a free (Σ, \mathcal{E}) -algebra on X.

In general, 𝒮(X) is not a quotient of 𝒮_𝔅(X)
▷ ...this is because (I-Ar) may create new defined terms

Concluding Remarks

Summary:

• For a λ -ary Horn theory \mathscr{H} , we have a bijective correspondence

- $\,\vartriangleright\,$ $\lambda\text{-accessible enriched monads on <math display="inline">\mathsf{Str}\mathscr{H}$ and
- $\triangleright \ \lambda$ -ary relational algebraic theories
- The theory-to-monad translation holds for all regular $\kappa \leq \lambda$
- Relational logic is sound/complete for relational reasoning **Future work**:
- Generalization to the setting of graded monads
 - ▷ theory of 'behavioural relations' for Horn-definable relation types á la Milius, Pattinson, and Schröder (CALCO 2015)
- Further examples/enrichments?
- Which theories capture, e.g., finitary monads on Met?

chase.ford@fau.de