Tensor of Quantitative Equational Theories

Giorgio Bacci, Radu Mardare, Prakash Panangaden and Gordon Plotkin

CALCO'21

31st August, Salzburg (online)

Historical Perspective

- Moggi'88: How to incorporate effects into denotational semantics? -Monads as notions of computations
- Plotkin & Power'01: (most of the) Monads are given by operations and equations -Algebraic Effects
- Hyland, Plotkin, Power'06: sum and tensor of theories
 -Combining Algebraic Effects
- Mardare, Panangaden, Plotkin (LICS'16): Theory of effects in a metric setting -Quantitative Algebraic Effects (operations & quantitative equations give monads on EMet)

The Standard Picture

Lawvere'64, Linton'66

The Enriched Picture*

Power (TAC'99)

(*) enriched over a locally finitely presentable monoidal éategory V

The Quantitative Picture

Mardare, Panangaden, Plotkin (LICS'16) + Bacci (LICS'18)

What have we done

- Shown that the tensor of quantitative theories corresponds to the tensor of their quantitative effects as monads
- Given quantitative analogues of Moggi's reader and writer monad transformers at the level of theories using tensor
- Shown how to combine -by sum and tensor- different theories to produce new interesting examples
- Specifically, equational axiomatization of LMPs and MDPs with their discounted bisimilarity metrics

Quantitative Equations

Mardare, Panangaden, Plotkin (LICS'16)

$$s=_{\varepsilon}t$$

"s is approximately equal to t up to an error arepsilon"

Example: Barycentric Algebras

Are the quantitative algebras over the signature

$$\Sigma_{\mathcal{B}} = \{ +_e : 2 \mid e \in [0,1] \}$$

satisfying the following conditional quantitative equations

(B1)
$$\vdash x +_1 y =_0 x$$

(B2)
$$\vdash x +_e x =_0 x$$

(B3)
$$\vdash x + y =_0 y + x$$

(SC)
$$\vdash x +_e y =_0 y +_{1-e} x$$

(SA)
$$\vdash (x +_e y) +_{e'} z =_0 x +_{ee'} (y +_{\frac{(1-e)e'}{1-ee'}} z), \text{ for } e, e' \in (0,1)$$

(IB)
$$x =_{\epsilon} y, x' =_{\epsilon'} y' \vdash x +_{\epsilon} x' =_{\delta} y +_{\epsilon} y'$$
, where $\delta = e\epsilon + (1 - \epsilon)\epsilon'$

A geometric intuition

(IB)
$$x =_{\epsilon} y, x' =_{\epsilon'} y' \vdash x +_{e} x' =_{\delta} y +_{e} y'$$
, where $\delta = e\epsilon + (1 - e)\epsilon'$

Example of models

Unit interval with Euclidian distance and convex combinators

$$([0,1], d_{[0,1]})$$
 $(+_e)^{[0,1]}(a,b) = ea + (1-e)b$

Finitely supported distributions with Kantorovich distance

$$(\mathcal{D}(X), \mathcal{K}(d_X)) \qquad (+_e)^{\mathcal{D}}(\mu, \nu) = e\mu + (1 - e)\nu$$

Borel probability measures with Kantorovich distance

$$(\Delta(X), \mathcal{K}(d_X)) \qquad (+)^{\Delta}(\mu, \nu) = e\mu + (1 - e)\nu$$

Quantitative Equational Theory

Mardare, Panangaden, Plotkin (LICS'16)

A quantitative equational theory $\mathscr U$ of type Σ is a set of

$$\{s_i =_{\varepsilon_i} t_i \mid i \in I\} \vdash_{\mathcal{S}} s =_{\varepsilon} t$$
conditional quantitative equations

closed under substitution of variables, logical inference, and the following "meta axioms"

(Refl)
$$\vdash x =_0 x$$

(Symm) $x =_{\varepsilon} y \vdash y =_{\varepsilon} x$
(Triang) $x =_{\varepsilon} y, y =_{\delta} z \vdash x =_{\varepsilon + \delta} y$
(NExp) $x_1 =_{\varepsilon} y_1, \dots, y_n =_{\varepsilon} y_n \vdash f(x_1, \dots, x_n) =_{\varepsilon} f(y_1, \dots, y_n) - \mathbf{for} f \in \Sigma$
(Max) $x =_{\varepsilon} y \vdash x =_{\varepsilon + \delta} y - \mathbf{for} \delta > 0$
(Inf) $\{x =_{\delta} y \mid \delta > \varepsilon\} \vdash x =_{\varepsilon} y$

Quantitative Algebras

Mardare, Panangaden, Plotkin (LICS'16)

The models of a quantitative equational theory $\mathscr U$ of type Σ are

Quantitative Σ -Algebras:

$$\mathscr{A} = (A, \alpha \colon \Sigma A \to A)$$
 –Universal Σ -algebras on EMet

Satisfying the all the conditional quantitative equations in $\,\mathscr{U}\,$

Satisfiability

$$\mathscr{A} \models \left(\{ t_i =_{\varepsilon_i} s_i \mid i \in I \} \vdash t =_{\varepsilon} s \right)$$
iff

for any assignment $\iota: X \to A$

$$(\forall i \in I. d_A(\iota(t_i), \iota(s_i)) \leq \varepsilon_i)$$
 implies $d_A(\iota(t), \iota(s)) \leq \varepsilon$

Free Monad on EMet

Mardare, Panangaden, Plotkin (LICS'16)

Example: Barycentric Algebras

$$\sum_{\mathcal{B}} = \{ +_e : 2 \mid e \in [0,1] \}$$
(B1) $\vdash x +_1 y =_0 x$
(B2) $\vdash x +_e x =_0 x$
(B3) $\vdash x + y =_0 y + x$
(SC) $\vdash x +_e y =_0 y +_{1-e} x$

(SA)
$$\vdash (x +_e y) +_{e'} z =_0 x +_{ee'} (y +_{\underbrace{(1-e)e'}} z), \text{ for } e, e' \in (0,1)$$

(IB)
$$x =_{\epsilon} y, x' =_{\epsilon'} y' \vdash x +_{e} x' =_{\delta} y +_{e} y'$$
, where $\delta = e\epsilon + (1 - e)\epsilon'$

Compositional Reasoning via Tensor

Tensor of Quantitative Theories

It's the operation that combines two theories by imposing the *commutation* of the operations of the theories over each other

- Freyd'66: on equational theories
- Hyland, Plotkin, Power'06: on enriched Lawvere theories

we follow Freyd'66

Our Definition

Let $\mathscr{U}, \mathscr{U}'$ be *quantitative theories* with disjoint signatures Σ, Σ' . The *tensor* $\mathscr{U} \otimes \mathscr{U}'$ is the smallest theory containing the two theories and such that for all $f \colon n \in \Sigma$ and $g \colon m \in \Sigma'$

$$\vdash f(g(x_{1,1},...,x_{1,m}),...,g(x_{n,1},...,x_{n,m})) \equiv_0 g(f(x_{1,1},...,x_{n,1}),...,f(x_{1,m},...,x_{n,m}))$$

Main contribution

Theorem

The tensor of quantitative theories corresponds to the categorical tensor of their quantitative effects as monads

Monad Transformers

- Moggi, Cenciarelli'93: Combination of effects as strong monad transformers on cartesian closed categories
- Hyland, Plotkin, Power'06: explained many of Moggi's monad transformers as sum and tensors.

In particular...

Reader monad transformer

$$T \mapsto (T-)^A \cong T \otimes (-)^A$$

Writer monad transformer

$$T \mapsto (A \times T -) \cong T \otimes (A \times -)$$

Quantitative Reader Algebras

$$\Sigma_{\mathscr{R}} = \{ \mathbf{f} : |E| \}$$

$$\text{reads from a finite set of inputs } E = \{e_1, ..., e_n\} \text{ and proceeds}$$

$$(\text{Idem}) \vdash x \equiv_0 \mathbf{r}(x, ..., x)$$

$$(\text{Diag}) \vdash \mathbf{r}(x_{1,1}, ..., x_{n,n}) \equiv_0 \mathbf{r}(\mathbf{r}(x_{1,1}, ..., x_{1,n}), ..., \mathbf{r}(x_{n,1}, ..., x_{n,n}))$$

$$\text{Monad in EMet only for discrete spaces of inputs!}$$

$$\mathbb{K}(\Sigma_{\mathscr{R}}, \mathscr{R}) \stackrel{\perp}{\longrightarrow} \mathbf{EMet} \implies T_{\mathscr{R}} \cong (-)^{\underline{E}}$$

$$\text{quantitative reader algebras}$$

$$\text{Reader monad for the discrete space } \underline{E}$$

Quantitative Writer Algebras

Let $(\Lambda, \star, 0)$ be a monoid with non-expansive multiplication

metric space

$$\sum_{\mathcal{W}} = \{ \mathbf{W}_a \colon 1 \mid a \in \Lambda \}$$
writes the output symbol a and proceeds

(Zero)
$$\vdash x \equiv_0 \mathbf{w}_0(x)$$

(Mult) $\vdash \mathbf{w}_a(\mathbf{w}_b(x)) \equiv_0 \mathbf{w}_{a\star b}(x)$
(Diff) $\{x \equiv_{\epsilon} x'\} \vdash \mathbf{w}_a(x) \equiv_{\delta} \mathbf{w}_b(x'), \text{ for } \delta \geq d_{\Lambda}(a,b) + \epsilon$

Quantitative Theory Transformers

We can obtain quantitative analogues of Moggi's reader and writer monad transformers at the level of theories using tensor

as the combination of simpler theories, via sum & tensor

Quantitative Axiomatizations of LMPs (and MDPs)

(with discounted bisimilarity metrics)

Labelled Markov Processes

and their c-discounted bisimilarity metric

As in van Breugel et al. (TCS'03), we regard LMPs over metric spaces as the coalgebras for the functor $(\mathcal{D}(1+c\cdot-))^{\underline{A}}$ in **EMet**

The step-by-step recipe

STEP 1: We axiomatize sub-probability distributions as the disjoint sum of the barycentric and pointed theory

$$\mathcal{U}_1 = \mathcal{B} + \mathcal{Z} \longrightarrow T_{\mathcal{U}_1} \cong \mathcal{D}(1+-) \qquad \text{sub-probability distributions monad}$$
 Interpolative barycentric theory
$$\sum_0 = \{\mathbf{0} \colon 0\}$$

STEP 2: apply the quantitative reader theory transformer

adds reaction to action labels

$$\mathcal{U}_2 = \mathcal{U}_1 \otimes \mathcal{R} \longrightarrow T_{\mathcal{U}_2} \cong (\mathcal{D}(1+-))^{\underline{A}}$$

STEP 3: add a unary c-Lipschitz transition step operator \diamond : 1

$$\mathcal{U}_{LMP} = \mathcal{U}_2 + \mathcal{T} \longrightarrow T_{\mathcal{U}_{LMP}} \cong \mu y . ((\mathcal{D}(1+c\cdot y+-))^{\underline{A}})$$
 axiom for c -Lipschitz contractivity LMPs with c -discounted bisimilarity metric

The resulting theory $\mathcal{U}_{\mathsf{LMP}}$

(B1)
$$\vdash x +_1 y =_0 x$$

(B2) $\vdash x +_e x =_0 x$
(B3) $\vdash x + y =_0 y + x$
(SC) $\vdash x +_e y =_0 y +_{1-e} x$
(SA) $\vdash (x +_e y) +_{e'} z =_0 x +_{ee'} (y +_{\frac{(1-e)e'}{1-ee'}} z)$, for $e, e' \in (0,1)$
(IB) $x =_e y, x' =_{e'} y' \vdash x +_e x' =_{\delta} y +_e y'$, where $\delta = e\epsilon + (1-e)\epsilon'$
(Idem) $\vdash x \equiv_0 \mathbf{r}(x, x)$
(Diag) $\vdash \mathbf{r}(x, y) \equiv_0 \mathbf{r}(\mathbf{r}(x, z), \mathbf{r}(w, y))$
(Comm) $\vdash \mathbf{r}(x +_e y, x' +_e y') \equiv_0 \mathbf{r}(x, x') +_e \mathbf{r}(y, y')$
(\diamond -Lip) $x =_e y \vdash \diamond x =_{c\epsilon} \diamond y$

Conclusions

- We developed the theory for the commutative combination of quantitative algebraic effects (equational theory + monads)
- We illustrated the applicability of our theory by showing how to produce novel interesting quantitative axiomatizations
- Introduced the concept of *pre-operation of a* functor
- Given an algebraic representation of the final coalgebra of LMPs and MDPs over extended metric spaces

Probability + non-determinism (distributive tensor?)

Thank you for the attention