Tensor of Quantitative Equational Theories

Giorgio Bacci, Radu Mardare, Prakash Panangaden and Gordon Plotkin

CALCO'21

31st August, Salzburg (online)

Historical Perspective

- Moggi'88: How to incorporate effects into denotational semantics? -Monads as notions of computations
- Plotkin \& Power'01: (most of the) Monads are given by operations and equations -Algebraic Effects
- Hyland, Plotkin, Power'06: sum and tensor of theories -Combining Algebraic Effects
- Mardare, Panangaden, Plotkin (LICS'16): Theory of effects in a metric setting -Quantitative Algebraic Effects (operations \& quantitative equations give monads on EMet)

The Standard Picture

Lawvere'64, Linton'66

The Enriched Picture*

Power (TAC'99)

$\left(^{*}\right)$ enriched over a locally finitely presentable monoidal Eategory V

The Quantitative Picture

What have we done

- Shown that the tensor of quantitative theories corresponds to the tensor of their quantitative effects as monads
- Given quantitative analogues of Moggi's reader and writer monad transformers at the level of theories using tensor
- Shown how to combine -by sum and tensor- different theories to produce new interesting examples
- Specifically, equational axiomatization of LMPs and MDPs with their discounted bisimilarity metrics

Quantitative Equations

Mardare, Panangaden, Plotkin (LICS'16)

$$
S={ }_{\varepsilon} t
$$

" S is approximately equal to t up to an error ε "

Example: Barycentric Algebras

Are the quantitative algebras over the signature

$$
\Sigma_{\mathscr{B}}=\{\underbrace{++_{e}: 2 \mid}_{\text {convex sum }} e \in[0,1]\}
$$

satisfying the following conditional quantitative equations
(B1) $\vdash x+{ }_{1} y={ }_{0} x$
(B2) $\vdash x+{ }_{e} x={ }_{0} x$
(B3) $\vdash x+y==_{0} y+x$
(SC) $\vdash x+{ }_{e} y={ }_{0} y+_{1-e} x$
(SA) $\vdash\left(x+{ }_{e} y\right)+_{e^{\prime}} z={ }_{0} x+_{e e^{\prime}}\left(y+_{\frac{\left(1-e e^{\prime}\right.}{1-e e^{\prime}}} z\right)$, for $e, e^{\prime} \in(0,1)$
(IB) $x==_{\epsilon} y, x^{\prime}={ }_{\epsilon^{\prime}} y^{\prime} \vdash x+{ }_{e} x^{\prime}={ }_{\delta} y+{ }_{e} y^{\prime}$, where $\delta=e \epsilon+(1-e) \epsilon^{\prime}$

A geometric intuition

(IB) $x={ }_{\epsilon} y, x^{\prime}={ }_{\epsilon^{\prime}} y^{\prime} \vdash x+{ }_{e} x^{\prime}={ }_{\delta} y+{ }_{e} y^{\prime}$, where $\delta=e \epsilon+(1-e) \epsilon^{\prime}$

Example of models

Unit interval with Euclidian distance and convex combinators

$$
\left([0,1], d_{[0,1]}\right) \quad\left(+_{e}\right)^{[0,1]}(a, b)=e a+(1-e) b
$$

Finitely supported distributions with Kantorovich distance
$\left(\mathscr{D}(X), \mathscr{K}\left(d_{X}\right)\right)$
$\left(+_{e}\right)^{\mathscr{D}}(\mu, \nu)=e \mu+(1-e) \nu$

Borel probability measures with Kantorovich distance
$\left(\Delta(X), \mathscr{K}\left(d_{X}\right)\right)$
$(+)^{\Delta}(\mu, \nu)=e \mu+(1-e) \nu$

Quantitative Equational Theory

Mardare, Panangaden, Plotkin (LICS'16)
A quantitative equational theory \mathscr{U} of type Σ is a set of

$$
\left\{s_{i}=\underset{\mathcal{E}_{i}}{ } t_{i} \mid i \in I\right\} \stackrel{\leftarrow}{\text { conditional quantitative equations }}
$$

closed under substitution of variables, logical inference, and the following "meta axioms"
(Refl) $\vdash x={ }_{0} x$
(Symm) $x={ }_{\varepsilon} y \vdash y={ }_{\varepsilon} x$
(Triang) $x=_{\varepsilon} y, y==_{\delta} z \vdash x={ }_{\varepsilon+\delta} y$
(NExp) $\quad x_{1}=_{\varepsilon} y_{1}, \ldots, y_{n}={ }_{\varepsilon} y_{n} \vdash f\left(x_{1}, \ldots, x_{n}\right)={ }_{\varepsilon} f\left(y_{1}, \ldots, y_{n}\right)-\mathbf{f o r} f \in \Sigma$
(Max) $x={ }_{\varepsilon} y \vdash x={ }_{\varepsilon+\delta} y-$ for $\delta>0$
(Inf) $\left\{x={ }_{\delta} y \mid \delta>\varepsilon\right\} \vdash x={ }_{\varepsilon} y$

Quantitative Algebras

Mardare, Panangaden, Plotkin (LICS'16)
The models of a quantitative equational theory \mathscr{U} of type Σ are
Quantitative Σ-Algebras:
$\mathscr{A}=(A, \alpha: \Sigma A \rightarrow A)$-Universal Σ-algebras on EMet
Satisfying the all the conditional quantitative equations in \mathscr{U}

$$
\mathscr{A} \vDash\left(\left\{t_{i}={ }_{\varepsilon_{i}} s_{i} \mid i \in I\right\} \vdash t={ }_{\varepsilon} s\right)
$$

iff
for any assignment $l: X \rightarrow A$
$\left(\forall i \in I . d_{A}\left(l\left(t_{i}\right), l\left(s_{i}\right)\right) \leq \varepsilon_{i}\right)$ implies $d_{A}(l(t), l(s)) \leq \varepsilon$

Free Monad on EMet

Mardare, Panangaden, Plotkin (LICS'16)

Example: Barycentric Algebras

$$
\begin{aligned}
& \Sigma_{\mathscr{B}}=\left\{+_{e}: 2 \mid e \in[0,1]\right\} \\
& \text { convex sum } \\
& \text { (B1) } \vdash x+{ }_{1} y={ }_{0} x \\
& \text { (B2) } \vdash x+{ }_{e} x={ }_{0} x \\
& \text { (B3) } \vdash x+y={ }_{0} y+x \\
& \text { (SC) } \vdash x+_{e} y=0_{0} y++_{1-e} x \\
& \text { (SA) } \vdash\left(x+_{e} y\right)+_{e^{\prime}} z=0 x+_{e e^{\prime}}\left(y+_{\frac{\left(1-e e e^{\prime}\right.}{1-e e^{\prime}}} z\right) \text {, for } e, e^{\prime} \in(0,1) \\
& \text { (IB) } x={ }_{\epsilon} y, x^{\prime}={ }_{\epsilon^{\prime}} y^{\prime} \vdash x+{ }_{e} x^{\prime}={ }_{\delta} y+{ }_{e} y^{\prime} \text {, where } \delta=e \epsilon+(1-e) \epsilon^{\prime}
\end{aligned}
$$

Compositional Reasoning via Tensor

Tensor of Quantitative Theories

It's the operation that combines two theories by imposing the commutation of the operations of the theories over each other

- Freyd'66: on equational theories
- Hyland, Plotkin, Power'06: on enriched Lawvere theories

we follow Freyd'66

Our Definition

Let $\mathscr{U}, \mathscr{U}^{\prime}$ be quantitative theories with disjoint signatures Σ, Σ^{\prime}.
The tensor $\mathscr{U} \otimes \mathscr{U}^{\prime}$ is the smallest theory containing the two theories and such that for all $f: n \in \Sigma$ and $g: m \in \Sigma^{\prime}$
$\vdash f\left(g\left(x_{1,1}, \ldots, x_{1, m}\right), \ldots, g\left(x_{n, 1}, \ldots, x_{n, m}\right)\right) \equiv_{0} g\left(f\left(x_{1,1}, \ldots, x_{n, 1}\right), \ldots, f\left(x_{1, m}, \ldots, x_{n, m}\right)\right)$

Main contribution

Theorem

The tensor of quantitative theories corresponds to the categorical tensor of their quantitative effects as monads

Monad Transformers

- Moggi, Cenciarelli'93: Combination of effects as strong monad transformers on cartesian closed categories
- Hyland, Plotkin, Power'06: explained many of Moggi's monad transformers as sum and tensors.

In particular...
Reader monad transformer

$$
T \mapsto(T-)^{A} \cong T \otimes(-)^{A}
$$

Writer monad transformer

$$
T \mapsto(A \times T-) \cong T \otimes(A \times-)
$$

Quantitative Reader Algebras

$$
\Sigma_{\mathscr{R}}=\{\mathbf{r}:|E|\}
$$

$$
\text { reads from a finite set of inputs } E=\left\{e_{1}, \ldots, e_{n}\right\} \text { and proceeds }
$$

(Idem) $\vdash x \equiv_{0} \mathbf{r}(x, \ldots, x)$
(Diag) $\vdash \mathbf{r}\left(x_{1,1}, \ldots, x_{n, n}\right) \equiv_{0} \mathbf{r}\left(\mathbf{r}\left(x_{1,1}, \ldots, x_{1, n}\right), \ldots, \mathbf{r}\left(x_{n, 1}, \ldots, x_{n, n}\right)\right)$

> Monad in EMet only for discrete spaces of inputs!
$\mathbb{K}\left(\Sigma_{\mathscr{R}}, \mathscr{R}\right) \perp \perp$ EMet $\Rightarrow T_{\mathscr{R}} \cong(-)^{E}$
quantitative reader algebras

Reader monad for the discrete space \underline{E}

Quantitative Writer Algebras

Let $(\Lambda, \star, 0)$ be a monoid with non-expansive multiplication
metric space

$$
\underset{\sum_{\mathscr{W}}=\left\{\mathbf{w}_{a}^{\mathbf{w}_{a}}: 1 \mid a \in \Lambda\right\}}{ }
$$

(Zero) $\quad \vdash x \equiv_{0} \mathbf{w}_{0}(x)$
(Must) $\vdash \mathbf{w}_{a}\left(\mathbf{w}_{b}(x)\right) \equiv_{0} \mathbf{w}_{a \star b}(x)$
(Diff) $\quad\left\{x \equiv_{\epsilon} x^{\prime}\right\} \vdash \mathbf{w}_{a}(x) \equiv_{\delta} \mathbf{w}_{b}\left(x^{\prime}\right)$, for $\delta \geq d_{\Lambda}(a, b)+\epsilon$
$\mathbb{K}\left(\Sigma_{\mathscr{W}}, \mathscr{W}\right) \perp \perp$ EMP

Writer monad for the metric space Λ

$$
T_{\mathscr{V}} \cong(\Lambda \square-)
$$

Quantitative Theory Transformers

We can obtain quantitative analogues of Moggi's reader and writer monad transformers at the level of theories using tensor

Reader transformer

$\mathbb{K}\left(\Sigma+\Sigma_{\mathscr{R}}, \mathscr{U} \otimes \mathscr{R}\right)$

EMet

$$
T_{\mathscr{U}} \otimes \mathscr{R} \cong\left(T_{\mathscr{U}}-\right)^{E}
$$

Writer transformer

$$
\mathscr{U} \mapsto \mathscr{U} \otimes \mathscr{W}
$$

$$
\mathbb{K}\left(\Sigma+\Sigma_{\mathscr{W}}, \mathscr{U} \otimes \mathscr{W}\right)
$$

EMet

$$
T_{\mathscr{U}} \otimes \mathscr{V} \cong\left(\Lambda \square T_{\mathscr{U}}-\right)
$$

as the combination of simpler theories, via sum \& tensor

Quantitative Axiomatizations of LMPs (and MDPs)

(with discounted bisimilarity metrics)

Labelled Markov Processes

 and their c-discounted bisimilarity metric

As in van Breugel et al. (TCS'03), we regard LMPs over metric spaces as the coalgebras for the functor $(\mathscr{D}(1+c \cdot-))^{A}$ in EMet

The step-by-step recipe

STEP 1: We axiomatize sub-probability distributions as the disjoint sum of the barycentric and pointed theory

STEP 2: apply the quantitative reader theory transformer

adds reaction to action labels

$$
\mathscr{U}_{2}=\mathscr{U}_{1} \otimes \mathscr{R} \quad T_{U_{2}} \cong(\mathscr{D}(1+-))^{\underline{A}}
$$

STEP 3: add a unary c-Lipschitz transition step operator $\diamond: 1$

The resulting theory $\mathscr{U}_{\text {LMP }}$

(B1) $\vdash x+{ }_{1} y={ }_{0} x$
(B2) $\vdash x+{ }_{e} x={ }_{0} x$
(B3) $\vdash x+y=0 y+x$
(SC) $\vdash x+{ }_{e} y={ }_{0} y++_{1-e} x$
(SA) $\vdash\left(x+{ }_{e} y\right)+_{e^{\prime}} z={ }_{0} x+_{e e^{\prime}}\left(y+_{\frac{\left(1-e e^{\prime}\right.}{1-e^{\prime}}} z\right)$, for $e, e^{\prime} \in(0,1)$
(IB) $x={ }_{\epsilon} y, x^{\prime}={ }_{\epsilon^{\prime}} y^{\prime} \vdash x+{ }_{e} x^{\prime}={ }_{\delta} y+{ }_{e} y^{\prime}$, where $\delta=e \epsilon+(1-e) \epsilon^{\prime}$
(Idem) $\vdash x \equiv_{0} \mathbf{r}(x, x)$
(Diag) $\quad \vdash \mathbf{r}(x, y) \equiv{ }_{0} \mathbf{r}(\mathbf{r}(x, z), \mathbf{r}(w, y))$
(Comm) $\vdash \mathbf{r}\left(x+{ }_{e} y, x^{\prime}+{ }_{e} y^{\prime}\right) \equiv_{0} \mathbf{r}\left(x, x^{\prime}\right)+_{e} \mathbf{r}\left(y, y^{\prime}\right)$

$$
(\diamond-\text { Lip }) \quad x=_{\epsilon} y \vdash \diamond x==_{c e} \diamond y
$$

Conclusions

- We developed the theory for the commutative combination of quantitative algebraic effects (equational theory + monads)
- We illustrated the applicability of our theory by showing how to produce novel interesting quantitative axiomatizations
- Introduced the concept of pre-operation of a functor
- Given an algebraic representation of the final coalgebra of LMPs and MDPs over extended metric spaces
- Probability + non-determinism (distributive tensor?)

Thank you for the attention

