
MFPS 2021 Preliminary Proceedings

Multinomial and Hypergeometric distributions
in Markov Categories

Bart Jacobs

Institute for Computing and Information Sciences (iCIS)
Radboud University Nijmegen, The Netherlands

Email: bart@cs.ru.nl

Abstract

Markov categories, having tensors with copying and discarding, provide a setting for categorical probability. This paper uses finite
colimits and what we call uniform states in such Markov categories to define a (fixed size) multiset functor, with basic operations
for sums and zips of multisets, and a graded monad structure. Multisets can be used to represent both urns filled with coloured
balls and also draws of multiple balls from such urns. The main contribution of this paper is the abstract definition of multinomial
and hypergeometric distributions on multisets, as draws. It is shown that these operations interact appropriately with various
operations on multisets.

Keywords: Probability theory, category theory, multisets, multinomial distribution, hypergeometric distribution

1 Introduction

Given the current reliance on the probabilistic analysis of huge datasets, it is important to have a good formal
understanding of what may be called the logic of probability. In this line of work there is growing interest in
the axiomatisation of probability theory, using e.g. category theory — also called ‘synthetic’ probability theory.
Several efforts and approaches can be distinguished. We list a few of them, without claim to completeness.

(i) Probabilistic programming languages that incorporate updating (conditioning) and/or higher order fea-
tures, see e.g. [10,11,12,32,34,13].

(ii) The compositional approach to Bayesian networks [8,16] and to Bayesian reasoning [9,27,25].

(iii) The use of diagrammatic methods in (quantum) foundations and probability, see [7] for an overview.

(iv) Study of ‘probability monads’, e.g. in [30,23].

(v) Axiomatisation of disintegration as key probabilistic technique, see e.g. [17,3,19,18], and also [5].

(vi) Exploration of categorical structures, such as compact closed categories [1,33] or effectuses [21,4].

These topics cover both ordinary (classical) probability as well as quantum probability.
An issue that we are particularly interested in is the interplay between multisets (a.k.a. bags) and (prob-

ability) distributions (see e.g. [26]). Multisets play a fundamental role in probability theory, for instance as
representations of urns with coloured balls, and also of draws from such urns. More generally, in learning,
collections of data items, possibly occurring multiple times, are properly represented as multisets. Multinomial
and hypergeometric distributions assign probabilities to draws from an urn, and can thus be represented as
distributions on multisets. Multinomial distributions capture draws with replacement, whereas hypergeomet-
ric distributions capture draws without replacement. In the hypergeometric case the number of balls in the
urn decreases with every draw, but in the multinomial case the urn remains unchanged — and can thus be
represented as a distribution.

A basic, unsolved question that arises is: should one axiomatise distributions inside the world of multisets
(via causal maps, as e.g. in [4, Sec. 6] or [6]), or should multisets be described in the world of distributions?

This paper will be published
in the proceedings of MFPS XXXVII

URL: https://www.coalg.org/calco-mfps2021/mfps/



Jacobs

Briefly: do multisets or distributions come first? The question is highly relevant for axiomatisation, since for
instance, in the world of multisets one assumes biproducts ⊕, whereas in a world with distributions coproducts
+ play a leading role. These differences can also be expressed in terms of preservation properties of monads [30].
Of course, there are many more differences, but also similarities, such as presence of a monoidal structure ⊗
for parallel composition.

Most attention so far has gone to the first approach — with multisets first. Recently, the author published
a paper [24] that details the distributive law MD ⇒ DM of multisets over distributions, called the parallel
multinomial law pml. As a result, multisets M can be lifted to the Kleisli category K̀ (D) of the distribution
monad. Actually, what turned out to be most relevant, and well-behaved, is the functor M[K] that takes
K-sized multisets only, for a number K ∈ N. Via the lifted functor M[K] : K̀ (D) → K̀ (D) multisets appear
in the world of distributions — following the second approach, with distributions first.

The paper [24] demonstrated that besides the distributive law, several other probabilistic operations behave
well in the paper’s setting, notably multinomial and hypergeometric distributions, and a new form of zipping
for multisets, called multizip. The aim of the current paper is to reconstruct many of these results from [24],
in an axiomatic setting. MultisetsM[K] of a fixed size will be defined via a suitable quotient (see [28,2]), and
many operations are then derived from the associated universal property, including sums and zips of multisets
and multinomial and hypergeometric maps. Any useful axiomatisation of probability theory should include at
least such basic distributions. Interestingly, the distributive law pml that plays such a central role in [24] is
completely absent here. The reason is that pml is used for liftingM[K] to K̀ (D) in [24], whereas here our aim
is to axiomatise M[K] on categories like K̀ (D). The existence of pml justifies what we do here.

The current paper can be read without knowing about [24], but familiarity with that paper does help
to understand why certain choices are made here. Our axiomatisation happens in a monoidal category with
copying and discarding — like in [3], called Markov category in [17]. Here we shall use Markov categories with
finite colimits, plus distributivity of ⊗ over +, and what we call ‘uniform states’. Due to space constraints we
focus solely on the axiomatisation itself, and not on categories that possibly satisfy these requirements. Our
leading examples are the Kleisli categories K̀ (D) and K̀ (G) of the distribution and Giry monads D and G, for
discrete and continuous probability. We refer to [17] (and also [14]) for further instances of Markov categories.

The line of axiomatisation proposed here is a first step, with several loose ends, and is far from completed.
Still this direction is already of interest in this early stage, because it leads to representation of practically
relevant distributions. Our approach has a clear discrete focus so far, centered around multinomial and hyper-
geometric distributions, even though it applies in categories for continuous probability too. But it does not
cover typical continuous distributions like normal, beta, gamma, etc., for which the approach of [13] could be
useful. Our axiomatisation is based on multisets, and includes sums and multizips of such multisets, but not
tensors of multisets. Although tensors of multisets are a basic operation, they do not seem to fit in the current
set up, because they are not natural w.r.t. Kleisli maps, see the discussion at the end of this paper.

This article is organised as follows. It first introduces Markov categories with colimits and uses them to
define multisets in Sections 2 and 3. The additional probabilistic requirements, in the form of uniform states
are defined in Section 4. Sections 5, 6 and 7 introduce basic operations on multisets, such as arrangement and
frequentist learning, draw-and-delete, and sums and zips. Multinomial and hypergeometric distributions are
then defined in Section 8 and basic properties are proven, such as proper interaction with frequentist learning,
with draw-and-delete, and with multiset zipping.

2 Markov categories with colimits

This section briefly introduces the setting in which we will be working. A Markov category is a symmetric
monoidal category in which:

• the tensor unit is a final object 1, so that tensors ⊗ have projections π1 : X ⊗ Y → X ⊗ 1 ∼= X; this makes
the setting affine, see [22,23];

• each object X caries a comonoid structure δ : X → X⊗X for copying, which is commutative and associative
and satisfies π1 ◦ δ = id, and interacts appropriately with the monoidal structure (⊗, 1). These copiers can
be combined to n-ary form δ[K] : X → XK = X ⊗ · · · ⊗X.

We should emphasise that these copiers δ are not natural. In fact, a map f may be called deterministic
if it does commute with copying: (f ⊗ f) ◦ δ = δ ◦ f . It is required that all monoidal isomorphisms are
deterministic.

We shall assume that our Markov category has finite colimits, with several additional requirements.

• The coprojections (colimit injections) κi : Xi → colimiXi are deterministic, and also the mediating map
induced by deterministic maps is itself deterministic;

• Tensors ⊗ distribute over coproducts +. It makes sense to require that tensors distribute over all finite

2



Jacobs

colimits — so also over coequalisers — but we need that requirement at one point only, see Theorem 7.3,
and so we explicitly require it there.

We shall need one more requirement, namely ‘uniform states’, which will be introduced in Section 4. We shall
think of maps of the form 1→ X as distributions, also called states, over X. More generally, maps Y → X are
then Y -indexed distributions, which can be understood as conditional probabilities p(X | Y ).

In the remainder of this article we shall work in a fixed Markov category C with finite colimits as described
above.

3 Multisets

The formalisation of multiset in our Markov category C is a key, first step in our axiomatisation. We shall
focus on multisets of a fixed size K, that is, on multisets with K elements in total, including multiplicities.
Since multisets can be understood as sequences where the order does not matter, it makes sense to describe
multisetsM[K](X) over X of size K as quotient XK �M[K](X) of the object XK = X⊗· · ·⊗X of sequences
of length K, see also [28,2]. This section only contains the definition and functoriality. The sum and zip of
multisets are introduced later on, once we have seen uniform states.

We write, as usual, SK for the symmetric group of permutations {1, . . . ,K} ∼=→ {1, . . . ,K}. Each permuta-
tion σ ∈ SK translates into a (deterministic) isomorphism σ : XK ∼=→ XK via the monoidal isomorphisms.

Definition 3.1 For each number K ∈ N and X ∈ C write acc[K] for the coequaliser of all (interpreted)
permutation maps σ : XK ∼=→ XK , for σ ∈ SK , in:

XK
((

44

... σ XK acc[K]
// //M[K](X)

We call M[K](X) the object of K-sized multisets on X. The map acc is called accumulator; it turns a list
into a multiset by ignoring orderings. We omit the number K in acc[K] when it is clear from the context.

Concretely, in a set-theoretic setting one has: acc[5](a, b, a, b, b) = 2|a〉+ 3|b〉 ∈ M[5]({a, b}). We use a ket
notation | − 〉 for multisets, see [24] for more (set-theoretic) details.

We collect some basic facts.

Lemma 3.2 Consider the accumulator map acc : XK �M[K](X) from Definition 3.1.

(i) It is deterministic.

(ii) It satisfies acc ◦ σ = acc, for each permutation σ ∈ SK .

(iii) It is a natural transformation (−)K ⇒M[K], when M[K] is extended to a functor via:

XK
''

55

fK

��

... XK acc[K]X // //

fK

��

M[K](X)

M[K](f)

��

Y K
''

55

... Y K
acc[K]Y // //M[K](Y )

for f : X → Y.

(iv) Precomposition with copying gives a K-fold unit map acc ◦ δ[K] : X → XK → M[K](X), which is not
natural in X.

Proof. (i) The accumulator map acc is deterministic, as coequaliser of deterministic maps, see Section 2.

(ii) Since acc is by construction the coequaliser, we have acc ◦ σ = acc ◦ τ for all permutations σ, τ ∈ SK .
This holds in particular when we choose τ to be the identity permutation.

(iii) This works since fK ◦ σ = σ ◦ fK for each permutation σ.

(iv) Naturality fails, since only deterministic, not arbitrary, maps commute with copier δ. �

3



Jacobs

4 Uniform states

Let C be a Markov category as in Section 2. For each n ∈ N there is an interpreted number n ∈ C, namely:

n := 1 + · · ·+ 1︸ ︷︷ ︸
n times

where 1 ∈ C is the final object (tensor unit).

We shall use the sums + in this definition of n up to isomorphisms. Clearly, 1 = 1 and 0 = 0, as empty sum.
Further, n+m ∼= n+m. The codiagonal map ∇n = [id, . . . , id] : n→ 1 is the unique map to 1.

By distributivity of ⊗ over + we get a natural isomorphism n⊗X ∼= X + · · ·+X (n times). A map of the
form r : 1→ n will be called a convex series, of length n. Given another such series s : 1→ m we write:

r • s :=
(

1 r // n = 1 + · · ·+ 1
s+···+s //m+ · · ·+m

)
.

Then, up-to-isomorphism, r • s = s • r. This follows from a Kelly-Laplaza style argument [29]:

n
∼=
��

1roo s //

∼=
��

m
∼=
��

n⊗ 1
∼=
��

id⊗s --

1⊗ 1

r⊗s
��

r⊗idoo id⊗s // 1⊗m

r⊗idqq

∼=
��

1 + · · ·+ 1

s+···+s **

n⊗m 1 + · · ·+ 1

r+···+rtt
m+ · · ·+m

∼=

99

n+ · · ·+ n
∼=

dd

The following definition is typical for a probabilistic setting.

Definition 4.1 We say that the category C has uniform states if for each n ≥ 1 there is a uniform state
n : 1→ n. These states are required to satisfy:

(i) σ ◦ n = n, for each (interpretated) permutation σ : n
∼=→ n, of size n, that is for σ ∈ Sn;

(ii) n ⊗ m = n·m, up-to-isomorphism.

We think of : 1 → n as the n probabilities
(
1
n , . . . ,

1
n

)
adding up to 1, and thus forming a convex series.

We can use them to form other convex series, such as:

(
1
6 ,

1
2 ,

1
3

)
:=
(

1 // 6 = 1 + 3 + 2
id1+∇3+∇2 // 1 + 1 + 1 = 3

)
.

In this way we can form each ‘fractional’ convex series
(
n1

n , . . . ,
nk

n

)
as map 1→ k with n =

∑
i ni.

Given a convex series r : 1 → n, and an n-tuple of maps fi : X → Y we can form the convex sum
∑
i r ·

fi : X → Y via distributivity of ⊗ over +.

∑
i r · fi :=

(
X ∼= X ⊗ 1

id⊗r //X ⊗ n ∼= X + · · ·+X
[f1,...,fn] // Y

)
.

Lemma 4.2 Consider convex series r, s with suitably typed maps.

(i) Convex sums are preserved by sequential composition:(∑
i r · fi

)
◦ g =

∑
i r · (fi ◦ g) h ◦

(∑
i r · fi

)
=
∑
i r · (h ◦ fi).

(ii) Convex sums are preserved by parallel composition:∑
i r · (fi ⊗ g) = (

∑
i r · fi)⊗ g

∑
i r · (h⊗ fi) = h⊗ (

∑
i r · fi).

4



Jacobs

(iii) Convex sums of constant collections are constant:

∑
i r · f = f and in particular

∑
i r · id = id.

(iv)
(∑

j s · gj
)
◦
(∑

i r · fi
)

=
∑
j,i(s • r) · (gj ◦ fi). �

5 Arrangement and frequentist learning

In this section we combine multisets with convex sums to obtain arrangement and frequentist learning opera-
tions arr : M[K](X)→ XK and Flrn : M[K](X)→ X. Intuitively, the arrangement map arr sends a multiset
to the uniform distribution of all sequences that accumulate to the multiset. And the frequentist learning map
Flrn normalises a multiset into a distribution.

Since the symmetric group SK of permutations of a set with K elements has K! elements we can define:

perm :=
∑
σ∈SK

K! · σ : XK −→ XK . (1)

The following facts follow readily from Lemma 4.2.

Lemma 5.1 (i) perm is natural in X;

(ii) perm ◦ δ[K] = δ[K];

(iii) acc ◦ perm = acc, for the accumulation map of Definition 3.1.

Proof. The first two points follow from Lemma 4.2 in:

perm ◦ fK =
∑
σ∈SK

K! · (σ ◦ fK) =
∑
σ∈SK

K! · (fK ◦ σ) = fK ◦ perm

perm ◦ δ[K] =
∑
σ∈SK

K! · (σ ◦ δ[K]) =
∑
σ∈SK

K! · δ[K] = δ[K].

For the last point we use Lemma 3.2 (ii).

acc ◦ perm = acc ◦
(∑

σ
K! ·σ

)
=
∑

σ
K! ·(acc ◦ σ) =

∑
σ

K! ·acc = acc. �

For an object X ∈ C and a number K ∈ N there are projections πi : X
K → X, for 1 ≤ i ≤ K. Next, write,

for K ≥ 1,

ε[K] :=
∑
i K · πi : XK −→ X. (2)

Lemma 5.2 The map ε[K] in (2),

(i) is natural in X;

(ii) is the identity X → X for K = 1;

(iii) satisfies ε[K] ◦ δ[K] = id, for the K-fold copier δ[K] : X → XK . �

In a next step we define two basic operations associated with multisets, namely frequentist learning Flrn
and arrangment arr.

Definition 5.3 For X ∈ C, the universal property of the coequaliser yields frequentist learning maps
Flrn : M[K](X) → X, when K ≥ 1, and arrangment maps arr : M[K](X) → XK , for all K ≥ 0, in situ-
ations:

XK
%%

77

... XK acc // //

ε[K] ..

M[K](X)

Flrn
��

XK
%%

77

... XK acc // //

perm --

M[K](X)

arr
��

X XK

5



Jacobs

These definitions work since for each permutation τ ∈ SK one has:

ε ◦ τ =
∑

i
K ·(πi ◦ τ) =

∑
i

K ·πi = ε perm ◦ τ =
∑

σ
K! ·(σ ◦ τ) =

∑
σ

K! ·σ = perm.

Lemma 5.4 In the above situation,

(i) Flrn is a natural transformation M[K]⇒ id;

(ii) arr is a natural transformation M[K]⇒ (−)K ;

(iii) acc ◦ arr = id

(iv) σ ◦ arr = arr, for each σ ∈ SK .

Proof. (i) For f : X → Y we have Flrn ◦ M[K](f) = f ◦ Flrn, since acc is epic, using Lemma 5.2 (i):

Flrn ◦ M[K](f) ◦ acc = Flrn ◦ acc ◦ fK = ε ◦ fK = f ◦ ε = f ◦ Flrn ◦ acc.

(ii) Similarly we are done by:

arr ◦ M[K](f) ◦ acc = arr ◦ acc ◦ fK = perm ◦ fK = fK ◦ perm = fK ◦ arr ◦ acc.

(iii) The equation acc ◦ arr = id follows from Lemma 5.1 (iii):

acc ◦ arr ◦ acc = acc ◦ perm = acc = id ◦ acc.

(iv) Let σ ∈ SK be given. We get σ ◦ arr = arr from:

σ ◦ arr ◦ acc = σ ◦ perm =
∑
τ∈SK

K! · (σ ◦ τ) =
∑
τ∈SK

K! · τ = perm = arr ◦ acc. �

The following points are expected but useful to make explicit.

Lemma 5.5 (i) M[0](X) is final, so M[0](X) ∼= 1;

(ii) acc[1] : X →M[1](X) is an isomorphism, with arr[1] as inverse;

(iii) M[K](1) is also final;

(iv) M[K](0) is final for K = 0 and initial for K > 0.

Proof. (i) Since X0 = 1 by definition, we get acc[0] : 1→M[0](X), obviously satisfying ! ◦ acc[0] = id : 1→
1. But then also acc[0] ◦ ! = id since acc is epic and acc[0] ◦ ! ◦ acc[0] = acc[0].

(ii) We have Flrn ◦ acc[1] = ε[1] = id by Lemma 5.2 (ii). But then also acc[1] ◦ Flrn = id because acc[1] is
epic. Since also acc[1] ◦ arr[1] = id we get acc[1]−1 = arr[1] = Flrn : M[1](X)→ X, by Lemma 5.4 (iii).

(iii) We already know that M[K](1) is final for K = 0, by the first point. For K > 0 we can use frequentist
learning and use that 1K = 1, so Flrn ◦ acc[K] = id : 1 → 1. But then also acc[K] ◦ Flrn = id since
acc[K] is epic.

(iv) Note that 0K = 1 for K = 0 and 0K = 0 for K > 0. That M[0](0) is final follows from the first
point. For K > 0 frequentist learning Flrn is defined, giving Flrn ◦ acc[K] = id : 0 → 0. But then also
acc[K] ◦ Flrn = id since acc[K] is epic. �

Proofs of the next results are relegated to the appendix. The notation
((
n
K

))
=
(
n+K−1

K

)
is the multichoose

coefficient. It describes the number of multisets of size K over an n-element set, see e.g. [15, II (5.2)]. The
same result can be obtained in our abstract setting, in point (ii) below.

Proposition 5.6 (i) For K ≥ 0, and objects X,Y ,

M[K](X + Y ) ∼=
⊕

0≤i≤K

M[i](X)⊗M[K−i](Y ).

6



Jacobs

(ii) For a number n ≥ 1,

M[K](n) ∼=
((

n

K

))
=

(
n+K − 1

K

)
· 1.

6 Uniform deletion

When we think of a multiset inM[K](X) as an urn filled with K-many balls with colours in X, we would like
to have an operation for randomly drawing a (single) ball from the urn. We shall describe this as an operation
DD : M[K+1](X)→M[K](X), which we call draw-and-delete.

We fix K ∈ N and X ∈ C. For 1 ≤ i ≤ K + 1 we first define maps that remove the i-th element, and then
a uniform deletion map:

π̂i := id ⊗ · · · ⊗ id︸ ︷︷ ︸
i−1 times

⊗ !⊗ id ⊗ · · · ⊗ id︸ ︷︷ ︸
K+1−i times

: XK+1 → XK and del[K] :=
∑

1≤i≤K+1

K+1 · π̂i : XK+1 → XK .

In this definition of π̂i we write ! for the map to the final object 1.

Lemma 6.1 In the above situation,

(i) the maps π̂i and del are natural;

(ii) deletion commutes with permutation and with ε, as in:

XK+1

del ��

perm[K+1]
//XK+1

del
��

XK

ε[K] ,,

XK+1deloo

ε[K+1]rrXK perm[K]
//XK X

(iii) del ◦ δ[K+1] = δ[K];

(iv) del ◦ perm[K+1] = π ◦ perm[K+1], for the projection π = id⊗ ! : XK+1 → XK , and then also del ◦
arr[K+1] = π ◦ arr[K+1].

Proof. The first point is obvious, but the other ones requires more care. We use that for each permutation
σ ∈ SK+1 and index 1 ≤ i ≤ K + 1 there is a permutation τ ∈ SK and index j with π̂i ◦ σ = τ ◦ π̂j . This
yields K + 1 times the same τ . Hence:

del ◦ perm[K+1] =

 ∑
1≤i≤K+1

K+1 · π̂i

 ◦
 ∑
σ∈SK+1

(K+1)! · σ


=

∑
1≤i≤K+1

∑
σ∈SK+1

( K+1 ⊗ (K+1)!) · (π̂i ⊗ σ)

=
∑

1≤i≤K+1

∑
τ∈SK

( K+1 ⊗ K! ⊗ K+1) · (π̂i ⊗ τ ⊗ id)

=
∑

1≤i≤K+1

∑
τ∈SK

( K+1 ⊗ K!) · (π̂i ⊗ τ) = perm[K] ◦ del.

Similarly, all composites πj ◦ π̂i consist of K times the projection πi : X
K+1 → X. Hence:

ε[K] ◦ del =

 ∑
1≤j≤K

K · πj

 ◦
 ∑

1≤i≤K+1

K+1 · π̂i


=

∑
1≤j≤K

∑
1≤i≤K+1

( K ⊗ K+1) · (id ⊗ πi) =
∑

1≤i≤K+1

K+1 · πi = ε[K+1].

7



Jacobs

Along the same lines we obtain point (iv).

π ◦ perm[K+1] =
∑

σ∈SK+1

(K+1)! · (π ◦ σ) =
∑
τ∈SK

∑
1≤i≤K+1

( K! ⊗ K+1) · (τ ⊗ πi) = perm[K] ◦ del.

Finally, for point (iii) we use:

del ◦ δ[K+1] =
∑

1≤i≤K+1

K+1 · (π̂i ◦ δ[K+1]) =
∑

1≤i≤K+1

K+1 · δ[K] = δ[K]. �

These results allow us to define a draw-and-delete map DD : M[K+1](X)→M[K](X) in:

XK+1
''

66

... XK+1 acc // //

del ))

M[K+1](X)

DD

��

XK

acc **M[K](X)

(3)

Proposition 6.2 Consider the draw-and-delete map DD defined in (3). Frequentist learning after draw-and-
delete is frequentist learning, as described on the left below.

M[K](X)

Flrn ,,

M[K+1](X)DDoo

Flrnrr

XK+1

del
��

acc // //M[K+1](X) arr //

DD
��

XK+1

del
��

X XK acc // //M[K](X) arr //XK

In addition, the rectangles on the right commute.

Proof. The above triangle is obtained via the commuting triangle in Lemma 6.1:

Flrn ◦ DD ◦ acc = Flrn ◦ acc ◦ del = ε ◦ del = ε = Flrn ◦ acc.

The outer rectangle on the right commutes since it is the rectangle in Lemma 6.1. The inner rectangle on the
left commutes by definition (3) of draw-and-delete. Hence the inner rectangle on the right commutes because
acc is epic. �

7 Sum and zip of multisets

This section introduces two binary operations on multisets, namely the sum and zip. The sum is well-known and
involves addition of multplicities. The zip of multisets is a recently introduced operation (in [24]) that is more
complicated. It will be called multizip, to distinguish it from the zip operation for lists. Both operations are
obtained basically in the same way, namely by: (1) turning multisets into lists, via arrangement; (2) performing
the corresponding operation on lists; (3) turning the result back into a multiset via accumulation.

7.1 Summing multisets

Concatenation ++ of lists of fixed lengths can be described in a monoidal category as deterministic map of the
form:

XK ⊗XL ++
∼=
//XK+L.

We use it in the following way to define a sum of multisets.

Definition 7.1 For K ∈ N and X ∈ C define +: M[K](X)⊗M[L](X)→M[K+L](X) as composite:

+ :=
(
M[K](X)⊗M[L](X)

arr⊗arr //XK ⊗XL ++
∼=
//XK+L acc //M[K+L](X)

)
.

8



Jacobs

Since arr and acc are natural, and obviously concatenation ++ too, so the composite defining + in Defini-
tion 7.1 is natural too.

Lemma 7.2 The sum + of multisets from Definition 7.1 is commutative and associative, satisfying:

(
M[K](X)⊗M[L](X)

)
⊗M[N ](X)

+⊗id //

α ∼=

��

M[K+L](X)⊗M[N ](X)

+
��

M[K+L+N ](X)

M[K](X)⊗
(
M[L](X)⊗M[N ](X)

) id⊗+ //M[K](X)⊗M[L+N ](X)

+
OO

M[K](X)⊗M[L](X)

γ ∼=
��

+ //M[K+L](X) M[K](X)
∼= //M[0](X)⊗M[K](X)

+
��

M[L](X)⊗M[K](X)
+ //M[L+K](X) M[K](X)

Via this associativity and commutativity of + we can define an K-fold sum, for n ≥ 1,

M[L](X)K
∑

K //M[K · L](X) and then also M[K]
(
M[L](X))

µK,L //M[K · L](X). (4)

Theorem 7.3 Assume that maps of the form acc⊗acc are coequaliser too, e.g. because ⊗ preserves coequalisers.

(i) The sum of multisets + from Lemma 7.2 satisfies + ◦ (acc ⊗ acc) = acc ◦ ++, and is thus a (mediating)
deterministic map.

(ii) The maps
∑
K and µK,L in (4) are natural.

(iii) The maps µK,L in (4), together with the maps acc[1] : X → M[1](X) from Lemma 5.5 (ii), turn M[K]
into a graded monad, see e.g. [31,20], with respect to the multiplicative monoid (N, ·, 1) of natural numbers.

Proof. The equation in the first point is easy. It makes + deterministic, as a mediating map for a deterministic
map acc ◦ ++. The second point is obtained by using that the sum

∑
K and multiplications µK,L maps in (4)

are determined by:

(
XL
)K acc[L]K

// //

++K
∼=
��

M[L](X)K
∑

K //M[K · L](X) M[L](X)K
acc[K]

// //

∑
K ++

M[K]
(
M[L](X))

µK,L

��

XK·L acc[K·L]

66 66

M[K · L](X) �

When (U,m, u) is an internal commutative monoid we can define composition maps UK → U and
m[K] : M[K](U)→ U . The latter commutes with the sum in Lemma 7.2: m ◦ (m[K]⊗m[L]) = m[K+L] ◦ +.

7.2 Zipping multisets

In functional programming there is the familiar zip operation XK × Y K ∼=→ (X × Y )K that pairs the items of
two lists of the same length. It also exists in a monoidal category, via rearrangement:

zip :=
(
XK ⊗ Y K

(
X ⊗ · · · ⊗X

)
⊗
(
Y ⊗ · · · ⊗ Y

) ∼= // (X ⊗ Y )⊗ · · · ⊗ (X ⊗ Y ) (
X ⊗ Y

)K)
.

Clearly, this zip is natural in X,Y . We can now define an analogous zip operation for multisets of the same
size, called multizip, and written as mzip. It makes the multiset functor M[K] monoidal.

Definition 7.4 For K ∈ N and X,Y ∈ C define mzip : M[K](X)⊗M[K](Y )→M[K](X ×Y ) as composite:

mzip :=
(
M[K](X)⊗M[K](Y )

arr⊗arr //XK ⊗ Y K zip
∼=
// (X ⊗ Y )K acc //M[K](X ⊗ Y )

)
.

Proposition 7.5 (i) Multizip is natural.

9



Jacobs

(ii) Arrangement commutes with zip and mzip, as in:

M[K](X)⊗M[K](Y )

mzip
��

arr⊗arr //XK ⊗ Y K
∼= zip
��

M[K](X ⊗ Y ) arr // (X ⊗ Y )K

(iii) Multizip is associative, making M[K] together with the isomorphism 1
∼=→M[K](1) from Lemma 5.5 (ii)

a monoidal functor.

(iv) Multizip commutes with projections: M[K](π1) ◦ mzip = π1 : M[K](X) ⊗M[K](Y ) → M[K](X), and
similarly for the second projection π2.

(v) Multizip commutes with draw-and-delete:

M[K+1](X)⊗M[K+1](X)

mzip
��

DD⊗DD //M[K](X)⊗M[K](X)

mzip
��

M[K+1](X) DD //M[K](X)

Proof. (i) Easy, since all ingredients in the definition of mzip are natural.

(ii) Since:

arr ◦ mzip = perm ◦ zip ◦ (arr ⊗ arr) =
∑
σ∈SK

K! ·
(
σ ◦ zip ◦ (arr ⊗ arr)

)
=
∑
σ∈SK

K! ·
(
zip ◦ (σ ⊗ σ) ◦ (arr ⊗ arr)

)
=
∑
σ∈SK

K! ·
(
zip ◦ (arr ⊗ arr)

)
by Lemma 5.4 (iv)

= zip ◦ (arr ⊗ arr).

(iii) We reason as follows, using associativity of zip, and ignoring monoidal associativity.

mzip ◦ (mzip ⊗ id) = acc ◦ zip ◦ ((arr ◦ mzip)⊗ arr)

= acc ◦ zip ◦ (zip ⊗ id) ◦ (arr ⊗ arr ⊗ arr) by point (ii)

= acc ◦ zip ◦ (id ⊗ zip) ◦ (arr ⊗ arr ⊗ arr) by associativity of zip

= acc ◦ zip ◦ (arr ⊗ (arr ◦ mzip)) by point (ii) again

= mzip ◦ (id ⊗mzip).

(iv) We do the computation for the first projection π1 : X ⊗ Y → X.

M[K](π1) ◦ mzip = M[K](π1) ◦ acc ◦ zip ◦ (arr ⊗ arr) = acc ◦ (π1)K ◦ zip ◦ (arr ⊗ arr)

= acc ◦ π1 ◦ (arr ⊗ arr)

= acc ◦ arr ◦ π1
= π1 by Lemma 5.4 (iii).

10



Jacobs

(v) Via the following argument:

mzip ◦ (DD ⊗DD) = acc ◦ zip ◦
(
(arr ◦ DD)⊗ (arr ◦ DD)

)
= acc ◦ zip ◦

(
(del ◦ arr)⊗ (del ◦ arr)

)
by Proposition 6.2

= acc ◦ zip ◦
(
(π ◦ arr)⊗ (π ◦ arr)

)
by Lemma 6.1 (iv)

= acc ◦ π ◦ zip ◦ (arr ⊗ arr)

= acc ◦ π ◦ arr ◦ mzip by point (ii)

= acc ◦ del ◦ arr ◦ acc ◦ zip ◦ (arr ⊗ arr) by Lemma 6.1 (iv)

= DD ◦ acc ◦ arr ◦ acc ◦ zip ◦ (arr ⊗ arr)

= DD ◦ acc ◦ zip ◦ (arr ⊗ arr)

= DD ◦ mzip. �

8 Multinomial and hypergeometric distributions

This section finally introduces multinomial and hypergeometric distributions in the current axiomatic setting.
The ensuing results are as in [24] for the Kleisli category K̀ (D) of the distribution monad, but are now obtained
in a general categorical setting.

Definition 8.1 (i) For an arbitrary map f : X → Y and number K ∈ N we define the K-sized multinomial
mn[K](f) : X →M[K](Y ) of f as:

mn[K](f) :=
(
X

δ[K]
//XK fK

// Y K acc //M[K](Y )
)
.

(ii) For L ≥ K define the hypergeometric map hg [L,K] : M[L](X)→M[K](X) via repeated draw-and-delete:

hg [L,K] := DD ◦ · · · ◦ DD︸ ︷︷ ︸
L−K times

: M[L](X) −→M[K](X).

We first prove several results about multinomials.

Theorem 8.2 The multinomial maps satisfy the following properties.

X
mn[K](f)

//

f
��

M[K](Y )
arr
��

X
mn[K](f)

//

f //

M[K](Y )

Flrn
��

Y
δ[K]

// Y K Y

X
mn[K+1](f)

//

mn[K](f) --

M[K+1](Y )

DD
��

X
mn[K](mn[L](f))

//

mn[K·L](f) --

M[K]
(
M[L](Y ))

µK,L
��

M[K](Y ) M[K · L](Y )

X δ //

M[K+L](f) //

X ⊗Xmn[K](f)⊗mn[L](f)
//M[K](Y )⊗M[L](Y )

+
��

X ⊗Amn[K](f)⊗mn[K](g)
//

mn[K](f⊗g) ..

M[K](Y )⊗M[K](B)

mzip
��

M[K+L](Y ) M[K](Y ⊗B)

Proof. We handle commutation of the six digrams one by one. The first one follows from Lemma 5.1:

arr ◦ mn[K](f) = arr ◦ acc ◦ fK ◦ δ[K] = perm ◦ fK ◦ δ[K] = fK ◦ perm ◦ δ[K] = fK ◦ δ[K].

Via Lemma 5.2:

Flrn ◦ mn[K](f) = Flrn ◦ acc ◦ fK ◦ δ[K] = ε[K] ◦ fK ◦ δ[K] = f ◦ ε[K] ◦ δ[K] = f.

11



Jacobs

Next, by Lemma 6.1 (i) and (iii),

DD ◦ mn[K+1](f) = DD ◦ acc ◦ fK+1 ◦ δ[K+1]

= acc ◦ del ◦ fK+1 ◦ δ[K+1]

= acc ◦ fK ◦ del ◦ δ[K+1] = acc ◦ fK ◦ δ[K] = mn[K](f).

Next, we use the diagrams from the proof of Theorem 7.3.

µK,L ◦ mn[K]
(
mn[L](f)

)
= µK,L ◦ acc[K] ◦ mn[L](f)K ◦ δ[K]

=
∑
K ◦ acc[L]K ◦

(
fL
)K ◦ δ[L]K ◦ δ[K]

= acc[K · L] ◦ ++K ◦
(
fL
)K ◦ δ[L]K ◦ δ[K]

= acc[K · L] ◦ fK·L ◦ ++K ◦ δ[L]K ◦ δ[K]

= acc[K · L] ◦ fK·L ◦ δ[K · L]

= mn[K · L](f).

For the convolution property in the first diagram in the third row:

+ ◦
(
mn[K](f)⊗mn[L](f)

)
◦ δ = acc ◦ ++ ◦

(
(arr ◦ mn[K](f))⊗ (arr ◦ mn[L](f))

)
◦ δ

= acc ◦ ++ ◦
(
(fK ◦ δ[K])⊗ (fL ◦ δ[L])

)
◦ δ

= acc ◦ fK+L ◦ ++ ◦
(
δ[K]⊗ δ[L]

)
◦ δ

= acc ◦ fK+L ◦ δ[K+L]

= mn[K+L](f).

Finally, along the same lines:

mzip ◦
(
mn[K](f)⊗mn[K](g)

)
= acc ◦ zip ◦

(
(arr ◦ mn[K](f))⊗ (arr ◦ mn[K](g))

)
= acc ◦ zip ◦

(
(fK ◦ δ[K])⊗ (gK ◦ δ[K])

)
= acc ◦ (f ⊗ g)K ◦ zip ◦

(
δ[K]⊗ δ[K]

)
= acc ◦ (f ⊗ g)K ◦ δ[K]

= mn[K](f ⊗ g). �

We turn to the hypergeometric case. Proofs of the following results are easy, since we have aready done the
heavy-lifting earlier.

Theorem 8.3 The following diagrams about hypergeometric maps commute.

M[L](Y )
hg[L,K]

//M[K](Y ) M[L](X)
hg[L,K]

//

Flrn ..

M[K](X)

FlrnppXmn[L](f)

ZZ

mn[K](f)

CC

X

M[L](X)⊗M[L](Y )

mzip
��

hg[L,K]⊗hg[L,K]
//M[K](X)⊗M[K](Y )

mzip
��

M[L](X ⊗ Y )
hg[L,K]

//M[K](X ⊗ Y )

Proof. Commutation of the first triangle, on the left, follows directly from the definition of hg [L,K], using the
commutation of multinomials with draw-and-delete in Theorem 8.2. Via iterated application of the diagram
on the left in Proposition 6.2 one gets commutation of the second triangle, on the right. For the rectangle we
use Proposition 7.5 (v). �

12



Jacobs

9 Concluding remarks

This paper contains some basic handwork in categorical probability, introducing multisets as quotients, with
associated multinomial and hypergeometric distributions. It builds on and extends the development of proba-
bility theory in Markov categories.

We have not included tensors of multisets, as operation M[K](X) × M[L](Y ) → M[K · L](X ⊗ Y ).
It is possible to define such an operation, via strength st := zip ◦ (δ[L] ⊗ id) : X ⊗ Y L → (X × Y )L for
sequences. When one assumes that coequalisers are preserved by tensors ⊗, one can define strength for
multisets mst : X ⊗M[L](Y ) → M[L](X ⊗ Y ) such that mst ◦ (id ⊗ acc) = acc ◦ st. Although strength
for sequences is not commutative, this strength for multisets does satisfy commutativity, in a suitably graded
sense. However, the problem is that these strengths, for sequences and for multisets, are not natural, since
they involve copying. This generalises the findings in [24] that tensors of multisets are not well-behaved in a
probabilistic setting and that the multizip operation should be used instead — for instance because it makes the
(fixed-size) multiset functor monoidal and commutes well with multinomial and hypergeometric distributions,
as shown here. However, not all is well with multizip, since it does not make M[K] into a monoidal graded
monad. Calculation of a counterexample is quite intimidating.

It remains an interesting question, now with more urgency, what is required to represent other discrete and
also continuous distributions in Markov categories.

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In K. Engesser, Dov M. Gabbay, and D. Lehmann,
editors, Handbook of Quantum Logic and Quantum Structures: Quantum Logic, pages 261–323. North-Holland, Elsevier,
Computer Science Press, 2009.

[2] J. Adámek and J. Velebil. Analytic functors and weak pullbacks. Theory and Appl. of Categories, 21(11):191–209, 2008.

[3] K. Cho and B. Jacobs. Disintegration and Bayesian inversion via string diagrams. Math. Struct. in Comp. Sci., 29(7):938–971,
2019.

[4] K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. An introduction to effectus theory. see arxiv.org/abs/1512.05813,
2015.

[5] F. Clerc, F. Dahlqvist, V. Danos, and I. Garnier. Pointless learning. In J. Esparza and A. Murawski, editors, Foundations
of Software Science and Computation Structures, number 10203 in Lect. Notes Comp. Sci., pages 355–369. Springer, Berlin,
2017.

[6] B. Coecke, C. Heunen, and A. Kissinger. Categories of quantum and classical channels. Quantum Information Processing,
pages 1—-31, 2014.

[7] B. Coecke and A. Kissinger. Picturing Quantum Processes. A First Course in Quantum Theory and Diagrammatic Reasoning.
Cambridge Univ. Press, 2016.

[8] B. Coecke and R. Spekkens. Picturing classical and quantum Bayesian inference. Synthese, 186(3):651–696, 2012.

[9] J. Culbertson and K. Sturtz. A categorical foundation for Bayesian probability. Appl. Categorical Struct., 22(4):647–662,
2014.

[10] F. Dahlqvist, V. Danos, and I. Garnier. Robustly parameterised higher-order probabilistic models. In J. Desharnais and
R. Jagadeesan, editors, Int. Conf. on Concurrency Theory, volume 59 of LIPIcs, pages 23:1–23:15. Schloss Dagstuhl, 2016.

[11] F. Dahlqvist and D. Kozen. Semantics of higher-order probabilistic programs with conditioning. In Princ. of Programming
Languages, pages 57:1–57:29. ACM Press, 2020. See doi.org/10.1145/3371125.

[12] V. Danos and T. Ehrhard. Probabilistic coherence spaces as a model of higher-order probabilistic computation. Information
& Computation, 209(6):966–991, 2011.

[13] S. Dash and S. Staton. A monad for probabilistic point processes. In D. Spivak and J. Vicary, editors, Applied Category
Theory Conference, Elect. Proc. in Theor. Comp. Sci., 2020. https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ACT2020:61.

[14] S. Dash and S. Staton. Monads for measurable queries in probabilistic databases. In A. Sokolova, editor, Math. Found. of
Programming Semantics, 2021.

[15] W. Feller. An Introduction to Probability Theory and Its applications, volume I. Wiley, 3rd rev. edition, 1970.

[16] B. Fong. Causal theories: A categorical perspective on Bayesian networks. Master’s thesis, Univ. of Oxford, 2012. see
arxiv.org/abs/1301.6201.

[17] T. Fritz. A synthetic approach to Markov kernels, conditional independence, and theorems on sufficient statistics. Advances
in Math., 370:107239, 2020.

13

arxiv.org/abs/1512.05813
doi.org/10.1145/3371125
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ACT2020:61
arxiv.org/abs/1301.6201


Jacobs

[18] T. Fritz, T. Gonda, P. Perrone, and E. Rischel. Representable Markov categories and comparison of statistical experiments
in categorical probability. See arxiv.org/abs/2010.07416, 2020.

[19] T. Fritz and E. Rischel. Infinite products and zero-one laws in categorical probability. Compositionality, 2(3), 2020.

[20] S. Fujii, S. Katsumata, and P. Melliès. Towards a formal theory of graded monads. In B. Jacobs and C. Löding, editors,
Foundations of Software Science and Computation Structures, number 9634 in Lect. Notes Comp. Sci., pages 513–530.
Springer, Berlin, 2016.

[21] B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic. Logical Methods in Comp. Sci.,
11(3), 2015.

[22] B. Jacobs. Affine monads and side-effect-freeness. In I. Hasuo, editor, Coalgebraic Methods in Computer Science (CMCS
2016), number 9608 in Lect. Notes Comp. Sci., pages 53–72. Springer, Berlin, 2016.

[23] B. Jacobs. From probability monads to commutative effectuses. Journ. of Logical and Algebraic Methods in Programming,
94:200–237, 2018.

[24] B. Jacobs. From multisets over distributions to distributions over multisets. In Logic in Computer Science. IEEE, Computer
Science Press, 2021. See arxiv.org/abs/2105.06908.

[25] B. Jacobs. Learning from what’s right and learning from what’s wrong. In A. Sokolova, editor, Math. Found. of Programming
Semantics, 2021.

[26] B. Jacobs. Multisets and distributions, in drawing and learning. In A. Palmigiano and M. Sadrzadeh, editors, Samson
Abramsky on Logic and Structure in Computer Science and Beyond. Springer, 2021, to appear.

[27] B. Jacobs and F. Zanasi. The logical essentials of Bayesian reasoning. In G. Barthe, J.-P. Katoen, and A. Silva, editors,
Foundations of Probabilistic Programming, pages 295–331. Cambridge Univ. Press, 2021.

[28] A. Joyal. Foncteurs analytiques et espèces de structures. In G. Labelle and P. Leroux, editors, Combinatoire Enumerative,
number 1234 in Lect. Notes Math., pages 126–159. Springer, Berlin, 1986.

[29] M. Kelly and M. Laplaza. Coherence for compact closed categories. Journ. of Pure & Appl. Algebra, 19:193–213, 1980.

[30] A. Kock. Commutative monads as a theory of distributions. Theory and Appl. of Categories, 26(4):97–131, 2012.

[31] S. Milius, D. Pattinson, and L. Schröder. Generic trace semantics and graded monads. In L. Moss and P. Sobocinski, editors,
Conference on Algebra and Coalgebra in Computer Science (CALCO 2015), volume 35 of LIPIcs, pages 253–269. Schloss
Dagstuhl, 2015.

[32] F. Olmedo, F. Gretz, B. Lucien Kaminski, J-P. Katoen, and A. McIver. Conditioning in probabilistic programming. ACM
Trans. on Prog. Lang. & Syst., 40(1):4:1–4:50, 2018.

[33] P. Selinger. Dagger compact closed categories and completely positive maps (extended abstract). In P. Selinger, editor,
Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005), number 170 in Elect. Notes
in Theor. Comp. Sci., pages 139–163. Elsevier, Amsterdam, 2007. DOI http://dx.doi.org/10.1016/j.entcs.2006.12.018.

[34] S. Staton, H. Yang, C. Heunen, O. Kammar, and F. Wood. Semantics for probabilistic programming: higher-order functions,
continuous distributions, and soft constraints. In Logic in Computer Science. IEEE, Computer Science Press, 2016.

A Appendix

We sketch a proof of Proposition 5.6. Using that ⊗ distributes over + we formulate the Binomial Theorem as
a ‘list-split’ isomorphism lsplit in:

(X + Y )K
lsplit[K]
∼=

//
⊕

0≤i≤K

(
K
i

)
·
(
Xi ⊗ Y K−i

)
. (A.1)

We use the dot · for copower, so that n ·X = X + · · ·+X. The binomial coefficient
(
K
i

)
occurs because there

are
(
K
i

)
ways of turning a list of X’s of length i and a list of Y ’s of length K− i into a list of X +Y ’s of length

K, since the alternations of X and Y in (X + Y )K need to be taken into account.
These lsplit isomorphisms in (A.1) are obtained by induction on K. First, by definition,

(X + Y )0 ∼= 1 ∼= 1⊗ 1 ∼= 1 ·
(
X0 ⊗ Y 0

) ∼= ⊕
0≤i≤0

(
0
i

)
·
(
Xi ⊗ Y 0−i).

14

arxiv.org/abs/2010.07416
arxiv.org/abs/2105.06908
http://dx.doi.org/10.1016/j.entcs.2006.12.018


Jacobs

Next, via the familiar argument, but now in categorical form, using Pascal’s identity:

(X + Y )K+1 ∼= (X + Y )⊗ (X + Y )K

∼= X ⊗ (X + Y )K + Y ⊗ (X + Y )K

∼= X ⊗

( ⊕
0≤i≤K

(
K
i

)
·
(
Xi ⊗ Y K−i

))
+ Y ⊗

( ⊕
0≤i≤K

(
K
i

)
·
(
Xi ⊗ Y K−i

))
∼=

( ⊕
0≤i≤K

(
K
i

)
·
(
Xi+1 ⊗ Y K−i

))
+

( ⊕
0≤i≤K

(
K
i

)
·
(
Xi ⊗ Y K+1−i))

∼=
(
K
0

)
·
(
X1 ⊗ Y K

)
+ · · ·+

(
K
K

)
·
(
XK+1 ⊗ Y 0

)
+
(
K
0

)
·
(
X0 ⊗ Y K+1

)
+ · · ·+

(
K
K

)
·
(
XK ⊗ Y 1

)
∼=
(
K+1
0

)
·
(
X0 ⊗ Y K+1

)
+

( ⊕
1≤i≤K

((
K
i−1
)

+
(
K
i

))
·
(
Xi ⊗ Y K+1−i)) +

(
K+1
K+1

)
·
(
XK+1 ⊗ Y 0

)
∼=

⊕
0≤i≤K+1

(
K+1
i

)
·
(
Xi ⊗ Y K+1−i).

A next step is to combine list-split with accumulation.

Lemma A.1 For K ≥ 0 we write accs[K] for the sum of cotuples of accumulation maps in:

accs[K] :=
( ⊕

0≤i≤K

(
K
i

)
·
(
Xi ⊗ Y K−i

) ⊕
0≤i≤K

[
acc[i]⊗acc[K−i]

]
//
⊕

0≤i≤K
M[i](X)⊗M[K−i](Y )

)
Then:

(i) accs[K] ◦ lsplit =
⊕

0≤i≤K

(
(acc[i]⊗ acc[K−i]) ◦ ∇

)
◦ lsplit;

(ii) accs[K] ◦ lsplit ◦ σ = accs[K] ◦ lsplit for each permutation σ ∈ SK .

Proof. The first point says that that the the maps acc[i]⊗ acc[K−i] act the same on each of the
(
K
i

)
-many

alternations of X and Y in (X + Y )K . This follows from an easy combinatorial argument. Similarly for the
second point. �

We are now in a position to define a multiset split map msplit in:

(X + Y )K
**

22

... (X + Y )K acc // //

lsplit ++

M[K](X + Y )

msplit

��

⊕
0≤i≤K

(
K
i

)
·
(
Xi ⊗ Y K−i

)
accs[K]

,,⊕
0≤i≤K

M[i](X)⊗M[K−i](Y )

(A.2)

Our aim is to show that msplit is an isomorphism. There is an obvious map in the reverse direction, which
we already write as msplit−1 in anticipation of the proof. It’s define via the sum of multisets from Definition 7.1.

⊕
0≤i≤K

M[i](X)⊗M[K−i](Y )

msplit−1
..

⊕
0≤i≤K

M[i](κ1)⊗M[K−i](κ2)

//
⊕

0≤i≤K
M[i](X + Y )⊗M[K−i](X + Y )

[ + ]0≤i≤K

��

M[K](X + Y )

(A.3)

It is now “obvious” that msplit and msplit−1 are each other’s inverses, proving Proposition 5.6 (i).

15



Jacobs

We add a proof of Proposition 5.6 (ii), stating thatM[K](n) ∼=
((
n
K

))
· 1, where the multichoose coefficient

is defined as
((
n
K

))
=
(
n+K−1

K

)
. This result is obtained by induction on n ≥ 1. For n = 1 we get, by

Lemma 5.5 (iii):

M[K](1) = M[K](1) ∼= 1 =
(
1+K−1
K

)
· 1 =

((
1
K

))
· 1.

Next,

M[K](n+ 1) ∼= M[K](n+ 1) ∼=
⊕

0≤i≤K

M[i](n)⊗M[K−i](1) by Proposition 5.6 (i)

∼=
⊕

0≤i≤K

[((
n

i

))
· 1
]
⊗ 1 by induction hypothesis, and Lemma 5.5 (iii)

∼=

 ∑
0≤i≤K

((
n

i

)) · 1
=

((
n+ 1

K

))
· 1.

The latter equation is a basic property of multichoose.

16


	Introduction
	Markov categories with colimits
	Multisets
	Uniform states
	Arrangement and frequentist learning
	Uniform deletion
	Sum and zip of multisets
	Summing multisets
	Zipping multisets

	Multinomial and hypergeometric distributions
	Concluding remarks
	References
	Appendix

