Weakly Markov categories and weakly affine monads

Paolo Perrone Joint work with T. Fritz, F. Gadducci, D. Trotta

University of Oxford, Dept. of Computer Science

CALCO 2023

Introduction

Proposition

A monoid (M, m, e) in **Set** is a group if and only if the associativity square

$$\begin{array}{cccc} M \times M \times M & \xrightarrow{m \times \mathrm{id}} & M \times M \\ & & \downarrow^{\mathrm{id} \times m} & & \downarrow^m & \text{ is a pullback.} \\ M \times M & \xrightarrow{m} & M \end{array}$$

Introduction

Proposition

A monoid (M, m, e) in **Set** is a group if and only if the associativity square

$$\begin{array}{cccc} M \times M \times M & \xrightarrow{m \times \mathrm{id}} & M \times M \\ & & \downarrow^{\mathrm{id} \times m} & & \downarrow^m & & \text{is a pullback.} \\ M \times M & \xrightarrow{m} & M & & \end{array}$$

Theorem

Given a monoidal monad (T, μ, η, m) on a cartesian monoidal category, the monoid T1 is a group if and only if each associativity square

$$\begin{array}{cccc} TX \times TY \times TZ & \xrightarrow{m \times \mathrm{id}} & T(X \times Y) \times TZ \\ & & \downarrow^{\mathrm{id} \times m} & & \downarrow^{m} \end{array} & \text{ is a pullback} \\ TX \times T(Y \times Z) & \xrightarrow{m} & T(X \times Y \times Z) \end{array}$$

Definition

A garbage-share (GS) monoidal category, a.k.a. copy-discard (CD) category, is a SMC where each object X is equipped with maps

satisfying the commutative comonoid equations

and compatible with the monoidal structure.

Example

The category **Set** of sets and functions has the following copy and discard maps:

$$egin{array}{cc} X \xrightarrow{\operatorname{copy}} X imes X & X & X \xrightarrow{\operatorname{del}} 1 \ x \longmapsto (x,x) & x \longmapsto ullet \end{array}$$

Example

The category **Set** of sets and functions has the following copy and discard maps:

$$egin{array}{cc} X \xrightarrow{\operatorname{copy}} X imes X & X & X \xrightarrow{\operatorname{del}} 1 \ x \longmapsto & (x,x) & x \longmapsto & \bullet \end{array}$$

Example

More generally, in any cartesian monoidal category each object admits a unique commutative comonoid structure.

Example

The category $\ensuremath{\text{Rel}}$ has

- As objects, sets;
- As morphisms, binary relations $r: X \times Y \rightarrow \{0, 1\}$;

$$s \circ r(x,z) = \bigvee_{y} r(x,y) s(y,z)$$

Example

The category **Rel** has

- As objects, sets;
- As morphisms, binary relations $r: X \times Y \rightarrow \{0, 1\}$;

$$s \circ r(x,z) = \bigvee_{y} r(x,y) s(y,z)$$

Example

The category FinStoch has

- As objects, finite sets (or natural numbers);
- As morphisms, stochastic matrices $p: X \to Y$ of entries p(y|x);

$$q \circ p(z|x) = \sum_{y} q(z|y) p(y|x)$$

Proposition

Let T be a commutative (i.e. monoidal) monad on a cartesian monoidal category **D**. Then its Kleisli category **KI**_T is canonically a gs-monoidal category with the copy and discard structure induced by that of **D**.

Examples

• Rel is the Kleisli category of the power set monad on Set.

Proposition

Let T be a commutative (i.e. monoidal) monad on a cartesian monoidal category **D**. Then its Kleisli category **KI**_T is canonically a gs-monoidal category with the copy and discard structure induced by that of **D**.

Examples

- Rel is the Kleisli category of the power set monad on Set.
- Denote by *MX* the set of *finitely supported measures on X*. They form a monad which we call the **measure monad** on **Set**.
- The subset DX ⊆ MX of probability measures also gives a monad, the distribution monad. Its Kleisli category admits FinStoch as a full subcategory.

Definition

In a gs-monoidal category we call a **state** a morphism $p: I \rightarrow X$, and **effect** a morphism $a: X \rightarrow I$.

Definition

In a gs-monoidal category we call a **state** a morphism $p: I \rightarrow X$, and **effect** a morphism $a: X \rightarrow I$.

Examples

- In **Rel**, both states and effects are subsets of X.
- In \mathbf{KI}_M (and \mathbf{KI}_D),
 - States are finitely supported (probability) measures on X;
 - Effects of \mathbf{KI}_M are functions $X \to [0, \infty)$;
 - For \mathbf{KI}_D , the only effects are the discard maps.

Effects on a given object X form naturally a commutative monoid,

When the gs-monoidal category comes from a monad, the monoid of effects comes from the canonical monoid structure of $T_{1:}$

Example

For \mathbf{KI}_M , T1 is the monoid $[0, \infty)$ with multiplication. It acts on measures and kernels via the usual (pointwise) scalar multiplication.

Definition

A morphism f in a gs-monoidal category is called **full**, **discardable**, or **normalized** if and only if

$$\begin{array}{c} \bullet \\ \hline f \end{array} = \bullet$$

Definition

A morphism f in a gs-monoidal category is called **full**, **discardable**, or **normalized** if and only if

Examples

- In Rel, a relation r : X → Y is full if and only if each x ∈ X is related to at least one y ∈ Y. (This is the usual definition of full relation.)
- In KI_M, a matrix m: X → Y is full if and only if it is stochastic, i.e. each column is normalized:

$$\sum_{y\in Y} m(y|x) = 1.$$

Definition

A gs-monoidal category is called **Markov** if any of the following equivalent conditions hold:

- It is affine monoidal (i.e. the monoidal unit *I* is terminal);
- The only effects are the discard maps;
- The discard maps form a natural transformation $\mathrm{id} \Rightarrow \Delta_I$;
- Every morphism is full.

Definition

A gs-monoidal category is called **Markov** if any of the following equivalent conditions hold:

- It is affine monoidal (i.e. the monoidal unit *I* is terminal);
- The only effects are the discard maps;
- The discard maps form a natural transformation $id \Rightarrow \Delta_I$;
- Every morphism is full.

Example

KI_D is a Markov category, and so is its subcategory FinStoch.

Definition

A gs-monoidal category is called **Markov** if any of the following equivalent conditions hold:

- It is affine monoidal (i.e. the monoidal unit *I* is terminal);
- The only effects are the discard maps;
- The discard maps form a natural transformation $id \Rightarrow \Delta_I$;
- Every morphism is full.

Example

KI_D is a Markov category, and so is its subcategory FinStoch.

Proposition

Let T be a commutative monad on a cartesian monoidal category. The GS monoidal category \mathbf{KI}_{T} is Markov if and only if $T1 \cong 1$.

Weakly Markov categories

Definition

A gs-monoidal category **C** is called **weakly Markov (WM)** if for every object X, the monoid of effects C(X, I) is a group.

Definition

A commutative monad T on a cartesian monoidal category is called **weakly** affine if the monoid T1 is a group.

Weakly Markov categories

Definition

A gs-monoidal category **C** is called **weakly Markov (WM)** if for every object X, the monoid of effects C(X, I) is a group.

Definition

A commutative monad T on a cartesian monoidal category is called **weakly** affine if the monoid T1 is a group.

Proposition

A commutative monad on a cartesian monoidal category is weakly affine if and only if its Kleisli category is weakly Markov.

Example

Let $M^*X \subseteq MX$ be the set of *nonzero* measures on X. This forms a weakly affine submonad $M^* \subseteq M$.

Definition

A morphism $f : A \to X_1 \otimes \cdots \otimes X_n$ in a gs-monoidal category is said to exhibit **conditional independence of the** X_i **given** A if and only if it can be expressed as a product of the following form

Definition

A morphism $f : A \to X_1 \otimes \cdots \otimes X_n$ in a gs-monoidal category is said to exhibit **conditional independence of the** X_i **given** A if and only if it can be expressed as a product of the following form

Proposition

Let $f : A \to X_1 \otimes \cdots \otimes X_n$ be a morphism in a *weakly Markov* category. Then f exhibits conditional independence of the X_i given A if and only if it is *in the same orbit* as the product of all its marginals.

Lemma (localised independence property)

Whenever a morphism $f : A \to X \otimes Y \otimes Z$ in a WM category exhibits conditional independence of $X \otimes Y$ (jointly) and Z, as well as conditional independence of X and $Y \otimes Z$, then it exhibits conditional independence of X, Y, and Z (all given A).

Lemma (localised independence property)

Whenever a morphism $f : A \to X \otimes Y \otimes Z$ in a WM category exhibits conditional independence of $X \otimes Y$ (jointly) and Z, as well as conditional independence of X and $Y \otimes Z$, then it exhibits conditional independence of X, Y, and Z (all given A).

Lemma (localised independence property)

Whenever a morphism $f : A \to X \otimes Y \otimes Z$ in a WM category exhibits conditional independence of $X \otimes Y$ (jointly) and Z, as well as conditional independence of X and $Y \otimes Z$, then it exhibits conditional independence of X, Y, and Z (all given A).

Lemma (localised independence property)

Whenever a morphism $f : A \to X \otimes Y \otimes Z$ in a WM category exhibits conditional independence of $X \otimes Y$ (jointly) and Z, as well as conditional independence of X and $Y \otimes Z$, then it exhibits conditional independence of X, Y, and Z (all given A).

Lemma (localised independence property)

Whenever a morphism $f : A \to X \otimes Y \otimes Z$ in a WM category exhibits conditional independence of $X \otimes Y$ (jointly) and Z, as well as conditional independence of X and $Y \otimes Z$, then it exhibits conditional independence of X, Y, and Z (all given A).

but compare:

Main statement

Theorem

Let T be a commutative monad on **D** on a cartesian monoidal category. Then the following conditions are equivalent

- 1. T is weakly affine;
- 2. the Kleisli category $\mathbf{KI}_{\mathcal{T}}$ is weakly Markov;
- 3. for all objects X, Y, and Z, the following associativity diagram is a pullback:

$$\begin{array}{ccc} TX \times TY \times TZ & \xrightarrow{m \times \mathrm{id}} & T(X \times Y) \times TZ \\ & & \downarrow^{\mathrm{id} \times m} & & \downarrow^{m} \end{array} \\ TX \times T(Y \times Z) & \xrightarrow{m} & T(X \times Y \times Z) \end{array}$$

Conclusion

• Intermediate theory:

Conclusion

• Intermediate theory:

 $\begin{array}{cccc} \mathsf{Markov \ cats} & \longleftarrow & \mathsf{WM \ cats} & \longleftarrow & \mathsf{gs-m. \ cats} \\ & & \uparrow & & \uparrow & & \uparrow \\ & & & \mathsf{affine \ c. \ monads} & \longleftarrow & \mathsf{c. \ monads} & \longleftarrow & \mathsf{c. \ monads} \end{array}$

 Extension of conditional independence to WM case (useful e.g. for probabilistic programming)

Conclusion

• Intermediate theory:

 $\begin{array}{cccc} \mathsf{Markov \ cats} & \longleftarrow & \mathsf{WM \ cats} & \longleftarrow & \mathsf{gs-m. \ cats} \\ & & \uparrow & & \uparrow & & \uparrow \\ & & & \mathsf{affine \ c. \ monads} & \longleftarrow & \mathsf{c. \ monads} & \longleftarrow & \mathsf{c. \ monads} \end{array}$

- Extension of conditional independence to WM case (useful e.g. for probabilistic programming)
- Future work: extension of more probabilistic concepts (positivity, causality, etc.) as well as interaction with nontrivial effects.

Some references

K. Cho and B. Jacobs.

Disintegration and Bayesian inversion via string diagrams.

Mathematical Structures in Computer Science, 29(7):938–971, 2019.

B. Fong.

Causal theories: A categorical perspective on Bayesian networks.

Master's thesis, University of Oxford, 2012, 2013.

T. Fritz.

A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. *Advances in Mathematics*, 370:107239, 2020.

T. Fritz, F. Gadducci, P. Perrone, and D. Trotta. Weakly Markov categories and weakly affine monads, 2023.

arXiv:2303.14049.

T. Fritz, T. Gonda, and P. Perrone. De Finetti's theorem in categorical probability. *Journal of Stochastic Analysis*, 2(4), 2021. T. Fritz, T. Gonda, P. Perrone, and E. F. Rischel. Representable Markov categories and comparison of statistical experiments in Categorical Probability. *Theoretical Computer Science*, 961, 2023.

F. Gadducci.

On The Algebraic Approach To Concurrent Term Rewriting. PhD thesis, University of Pisa, 1996.

P. V. Golubtsov.

Axiomatic description of categories of information transformers.

Problems of Information Transmission, 35(3):259–274, 1999.

B. Jacobs.

Semantics of weakening and contraction. Annals of Pure and Applied Logic, 69(1):73–106, 1994.

A. Kock.

Bilinearity and cartesian closed monads. *Mathematica Scandinavica*, 29(2):161–174, 1971.

Contents

Introduction

GS-monoidal categories

The monoid of effects

Markov categories

Weakly Markov categories

Conditional independence in WMCs

Conclusion

References