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Introduction

Proposition

A monoid (M,m, e) in Set is a group if and only if the associativity square

M ×M ×M M ×M

M ×M M

id×m

m×id

m

m

is a pullback.

Theorem
Given a monoidal monad (T , µ, η,m) on a cartesian monoidal category, the
monoid T1 is a group if and only if each associativity square

TX × TY × TZ T (X × Y )× TZ

TX × T (Y × Z ) T (X × Y × Z )

id×m

m×id

m

m

is a pullback.

1 of 16



Introduction

Proposition

A monoid (M,m, e) in Set is a group if and only if the associativity square

M ×M ×M M ×M

M ×M M

id×m

m×id

m

m

is a pullback.

Theorem
Given a monoidal monad (T , µ, η,m) on a cartesian monoidal category, the
monoid T1 is a group if and only if each associativity square

TX × TY × TZ T (X × Y )× TZ

TX × T (Y × Z ) T (X × Y × Z )

id×m

m×id

m

m

is a pullback.

1 of 16



GS-monoidal categories

Definition
A garbage-share (GS) monoidal category, a.k.a. copy-discard (CD)
category, is a SMC where each object X is equipped with maps

X X

X

copy

X

del= =

satisfying the commutative comonoid equations

= = =

and compatible with the monoidal structure.
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GS-monoidal categories

Example

The category Set of sets and functions has the following copy and discard
maps:

X X × X X 1

x (x , x) x •

copy del

Example

More generally, in any cartesian monoidal category each object admits a
unique commutative comonoid structure.

X

X X × X X 1

X

id

id

!
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GS-monoidal categories

Example

The category Rel has

• As objects, sets;

• As morphisms, binary relations r : X × Y → {0, 1};

s ◦ r (x , z) =
∨
y

r(x , y) s(y , z)

Example

The category FinStoch has

• As objects, finite sets (or natural numbers);

• As morphisms, stochastic matrices p : X → Y of entries p(y |x);

q ◦ p (z |x) =
∑
y

q(z |y) p(y |x)
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GS-monoidal categories

Proposition

Let T be a commutative (i.e. monoidal) monad on a cartesian monoidal
category D. Then its Kleisli category KlT is canonically a gs-monoidal
category with the copy and discard structure induced by that of D.

Examples

• Rel is the Kleisli category of the power set monad on Set.

• Denote by MX the set of finitely supported measures on X . They form a
monad which we call the measure monad on Set.

• The subset DX ⊆ MX of probability measures also gives a monad, the
distribution monad. Its Kleisli category admits FinStoch as a full
subcategory.
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The monoid of effects

Definition
In a gs-monoidal category we call a state a morphism p : I → X , and effect
a morphism a : X → I .

X

a

p

X

Examples

• In Rel, both states and effects are subsets of X .

• In KlM (and KlD),
◦ States are finitely supported (probability) measures on X ;
◦ Effects of KlM are functions X → [0,∞);
◦ For KlD , the only effects are the discard maps.
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The monoid of effects

Effects on a given object X form naturally a commutative monoid,

a b

X X

acting on morphisms X → Y via

X

a

Y

f

:=
a · f

X

Y
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The monoid of effects

When the gs-monoidal category comes from a monad, the monoid of effects
comes from the canonical monoid structure of T1:

T1× T1 T (1× 1) ∼= T1

1 T1

m

η

X

T1

a2a1

m

Example

For KlM , T1 is the monoid [0,∞) with multiplication.
It acts on measures and kernels via the usual (pointwise) scalar
multiplication.
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Markov categories

Definition
A morphism f in a gs-monoidal category is called full, discardable, or
normalized if and only if

=f

Examples

• In Rel, a relation r : X → Y is full if and only if each x ∈ X is related to
at least one y ∈ Y . (This is the usual definition of full relation.)

• In KlM , a matrix m : X → Y is full if and only if it is stochastic, i.e. each
column is normalized: ∑

y∈Y

m(y |x) = 1.
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Markov categories

Definition
A gs-monoidal category is called Markov if any of the following equivalent
conditions hold:

• It is affine monoidal (i.e. the monoidal unit I is terminal);

• The only effects are the discard maps;

• The discard maps form a natural transformation id ⇒ ∆I ;

• Every morphism is full.

Example

KlD is a Markov category, and so is its subcategory FinStoch.

Proposition

Let T be a commutative monad on a cartesian monoidal category. The GS
monoidal category KlT is Markov if and only if T1 ∼= 1.

10 of 16



Markov categories

Definition
A gs-monoidal category is called Markov if any of the following equivalent
conditions hold:

• It is affine monoidal (i.e. the monoidal unit I is terminal);

• The only effects are the discard maps;

• The discard maps form a natural transformation id ⇒ ∆I ;

• Every morphism is full.

Example

KlD is a Markov category, and so is its subcategory FinStoch.

Proposition

Let T be a commutative monad on a cartesian monoidal category. The GS
monoidal category KlT is Markov if and only if T1 ∼= 1.

10 of 16



Markov categories

Definition
A gs-monoidal category is called Markov if any of the following equivalent
conditions hold:

• It is affine monoidal (i.e. the monoidal unit I is terminal);

• The only effects are the discard maps;

• The discard maps form a natural transformation id ⇒ ∆I ;

• Every morphism is full.

Example

KlD is a Markov category, and so is its subcategory FinStoch.

Proposition

Let T be a commutative monad on a cartesian monoidal category. The GS
monoidal category KlT is Markov if and only if T1 ∼= 1.

10 of 16



Weakly Markov categories

Definition
A gs-monoidal category C is called weakly Markov (WM) if for every
object X , the monoid of effects C(X , I ) is a group.

Definition
A commutative monad T on a cartesian monoidal category is called weakly
affine if the monoid T1 is a group.

Proposition

A commutative monad on a cartesian monoidal category is weakly affine if
and only if its Kleisli category is weakly Markov.

Example

Let M∗X ⊆ MX be the set of nonzero measures on X .
This forms a weakly affine submonad M∗ ⊆ M.
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Conditional independence in WMCs

Definition
A morphism f : A → X1 ⊗ · · · ⊗ Xn in a gs-monoidal category is said to
exhibit conditional independence of the Xi given A if and only if it can
be expressed as a product of the following form

g1 g2 gn· · ·

Proposition

Let f : A → X1 ⊗ · · · ⊗ Xn be a morphism in a weakly Markov category.
Then f exhibits conditional independence of the Xi given A if and only if it
is in the same orbit as the product of all its marginals.
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Conditional independence in WMCs

Lemma (localised independence property)

Whenever a morphism f : A → X ⊗ Y ⊗ Z in a WM category exhibits
conditional independence of X ⊗ Y (jointly) and Z , as well as conditional
independence of X and Y ⊗ Z , then it exhibits conditional independence of
X , Y , and Z (all given A).

X

Y

Z

but compare:

X Y Z
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Main statement

Theorem
Let T be a commutative monad on D on a cartesian monoidal category.
Then the following conditions are equivalent

1. T is weakly affine;

2. the Kleisli category KlT is weakly Markov;

3. for all objects X , Y , and Z , the following associativity diagram is a
pullback:

TX × TY × TZ T (X × Y )× TZ

TX × T (Y × Z ) T (X × Y × Z )

id×m

m×id

m

m
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Conclusion

• Intermediate theory:

Markov cats WM cats gs-m. cats

affine c. monads weakly affine c. monads c. monads

• Extension of conditional independence to WM case (useful e.g. for

probabilistic programming)

• Future work: extension of more probabilistic concepts (positivity,

causality, etc.) as well as interaction with nontrivial effects.
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