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Abstract

Normal-form bisimilarity is a simple, easy-to-use behavioral equivalence that relates terms in λ-calculi by
decomposing their normal forms into bisimilar subterms. Besides, they allow for powerful up-to techniques,
such as bisimulation up to context, which simplify bisimulation proofs even further. However, proving
soundness of these relations becomes complicated in the presence of η-expansion and usually relies on ad-
hoc proof methods which depend on the language. In this paper, we propose a more systematic proof
method to show that an extensional normal-form bisimilarity along with its corresponding bisimulation up
to context are sound. We illustrate our technique with the call-by-value λ-calculus, before applying it to
a call-by-value λ-calculus with the delimited-control operators shift and reset. In both cases, there was
previously no sound bisimulation up to context validating the η-law. Our results have been formalized in
the Coq proof assistant.
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1 Introduction

In formal languages inspired by the λ-calculus, the behavioral equivalence of choice

is usually formulated as a Morris-style contextual equivalence [18]: two terms are

equivalent if they behave the same in any context. This criterion captures quite

naturally the idea that replacing a term by an equivalent one in a bigger program

should not affect the behavior of the whole program. However, the quantification

over contexts makes contextual equivalence hard to use in practice to prove the

equivalence of two given terms. Therefore, it is common to look for easier-to-use,

sound alternatives that are at least included in contextual equivalence, such as

coinductively defined bisimilarities.
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Different styles of bisimilarities have been defined for the λ-calculus, includ-

ing applicative bisimilarity [1], normal-form bisimilarity [11] (originally called open

bisimilarity in [20]), and environmental bisimilarity [21]. Applicative and envi-

ronmental bisimilarities compare terms by applying them to function arguments,

while normal-form bisimilarity reduces terms to normal forms, which are then de-

composed into bisimilar subterms. As we can see, applicative and environmental

bisimilarities still rely on some form of quantification over arguments, which is not

the case of normal-form bisimilarity. As a drawback, the latter is usually not com-

plete w.r.t. contextual equivalence—there exist contextually equivalent terms that

are not normal-form bisimilar—while the former are. Like environmental bisimi-

larity, normal-form bisimilarity usually allows for up-to techniques [19], relations

which simplify equivalence proofs of terms by having less requirements than regu-

lar bisimilarities. For example, bisimulation up to context allows to forget about

a common context: to equate C[t] and C[s], it is enough to relate t and s with a

bisimulation up to context.

In the call-by-value λ-calculus, the simplest definition of normal-form bisimilar-

ity compares values by equating a variable only with itself, and a λ-abstraction only

with a λ-abstraction such that their bodies are bisimilar. Such a definition does not

respect call-by-value η-expansion, since it distinguishes x from λy.x y. A less dis-

criminating definition instead compares values by applying them to a fresh variable,

thus relating λy.vy and v for any value v such that y is not free in v: given a fresh z,

(λy.v y) z reduces to v z. Such a bisimilarity, that we call extensional bisimilarity, 6

relates more contextually equivalent terms, but proving its soundness as well as

proving the soundness of its up-to techniques is more difficult, and usually requires

ad-hoc proof methods, as we detail in the related work section (Section 2).

In [16], Madiot et al. propose a framework where proving the soundness of up-

to techniques is quite uniform and simpler. It also allows to factorize proofs, since

showing that bisimulation up to context is sound directly implies that the corre-

sponding bisimilarity is a congruence, which is the main property needed for proving

its soundness. In [16], the method is applied to environmental bisimilarities for the

plain call-by-name λ-calculus and for a call-by-value λ-calculus with references, as

well as to a bisimilarity for the π-calculus. In [2], we extend this framework to de-

fine environmental bisimilarities for a call-by-value λ-calculus with multi-prompted

delimited-control operators. We propose a distinction between strong and regular

up-to techniques, where regular up-to techniques cannot be used in certain bisimi-

larity tests, while strong ones can always be used. This distinction allows to prove

sound more powerful up-to techniques, by forbidding their use in cases where it

would be unsound to apply them.

So far, the method developed in [16,2] have been used in the λ-calculus only for

environmental bisimilarities. In this paper, we show that the framework of [2] can

also be used to prove the soundness of extensional normal-form bisimilarities and

their corresponding bisimulation up to context. We first apply it to the plain call-by-

value λ-calculus, in which an extensional normal-form bisimilarity, albeit without

6 Lassen uses the term bisimilarity up to η [10] for a normal-form bisimilarity that validates the η-law,
but we prefer the term extensional bisimilarity so that there is no confusion with notions referring to up-to
techniques such as bisimulation up to context.
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a corresponding bisimulation up to context, have already been proved sound [11],

to show how our framework allows to prove soundness for both proof techniques

at once. We then consider a call-by-value λ-calculus with the delimited-control

operators shift and reset [6], for which there has been no sound bisimulation

up to context validating the η-law either, and we show that our method applies

seamlessly in that setting as well. Our results have been formalized in the Coq proof

assistant, thus increasing the confidence in proofs that can be quite meticulous.

The paper is organized as follows: in Section 2, we discuss the previous proofs

of soundness of extensional normal-form bisimilarities. In Section 3, we present the

proof method for the call-by-value λ-calculus, that we then apply to a λ-calculus

with shift and reset in Section 4. We conclude in Section 5, and the Coq devel-

opments are available at http://www.ii.uni.wroc.pl/~ppolesiuk/apnfbisim.

2 Related Work

Normal-form bisimilarity has been first introduced in [20], where it was named

open bisimilarity, and has then been defined for many variants of the λ-calculus,

considering η-expansion [10,11,13,22,14,15,4,5] or not [9,12]. In this section we focus

on the articles treating the η-law, and in particular on the congruence and soundness

proofs presented therein.

In [10], Lassen defines several equivalences for the call-by-name λ-calculus, de-

pending on the chosen semantics. He defines head-normal-form (hnf) bisimulation

and hnf bisimulation up to η for the semantics based on reduction to head normal

form (where η-expansion applies to any term t, not only to a value as in the call-by-

value λ-calculus), and weak-head-normal-form (whnf) bisimulation based on reduc-

tion to weak head normal form. (It does not make sense to consider a whnf bisim-

ulation up to η, since it would be unsound, e.g., it would relate a non-terminating

term Ω with a normal form λx.Ω x.) The paper also defines a bisimulation up to

context for each bisimilarity.

The congruence proofs for the three bisimilarities follow from the main lemma

stating that if a relation is a bisimulation, then so is its substitutive and context

closure. The lemma is proved by nested induction on the definition of the closure

and on the number of steps in the evaluation of terms to normal forms. It can be

easily strengthened to prove the soundness of a bisimulation up to context: if a

relation is a bisimulation up to context, then its substitutive and context closure

is a bisimulation. The nested induction proof method has been then applied to

prove congruence for a whnf bisimilarity for the call-by-name λµ-calculus [9] (a

calculus with continuations), an extensional hnf bisimilarity for the call-by-name λ-

calculus with pairs [13], and a whnf bisimilarity for a call-by-name λ-calculus with

McCarthy’s ambiguous choice (amb) operator [12]. These papers do not define any

corresponding bisimulation up to context.

Lassen uses another proof technique in [11], where he defines an eager normal

form (enf) bisimilarity and an enf bisimilarity up to η. 7 Lassen shows that the

bisimilarities correspond to Böhm trees equivalence (up to η) after a continuation-

7 While weak head normal forms are normal forms under call-by-name evaluation, eager normal forms are
normal forms under call-by-value evaluation of λ-terms.
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passing style (CPS) translation, and then he deduces congruence of the enf bisimilar-

ities from the congruence of the Böhm trees equivalence. A CPS-translation based

technique has also been used in [13] to prove congruence of the extensional bisimi-

larity for the call-by-name λ-calculus (also with surjective pairing), the λµ-calculus,

and the Λµ-calculus. Unlike the nested induction proof method, this technique does

not extend to a soundness proof of a bisimulation up to context.

In [11], Lassen claims that “It is also possible to prove congruence of enf bisimi-

larity and enf bisimilarity up to η directly like the congruence proofs for other normal

form bisimilarities (tree equivalences) in [10], although the congruence proofs (...)

require non-trivial changes to the relational substitutive context closure operation in

op.cit. (...) Moreover, from the direct congruence proofs, we can derive bisimula-

tion up to context proof principles like those for other normal form bisimilarities

in op.cit.” To our knowledge, such a proof is not published anywhere; we tried to

carry out the congruence proof by following this comment, but we do not know how

to conclude in the case of enf bisimilarity up to η. We discuss what the problem is

at the end of the proof of Lemma 3.11.

In [22], the authors define extensional enf bisimilarities for three calculi: λµ

(continuations), λρ (mutable state), and λµρ (continuations and mutable state).

The congruence proof is rather convoluted and is done in two stages: first, prove

congruence of a non-extensional bisimilarity using the nested induction of [10], then

extend the result to the extensional bisimilarity by a syntactic translation that

takes advantage of an infinite η-expansion combinator. The paper does not mention

bisimulation up to context.

In [14,15], the authors define a normal-form bisimilarity for a CPS calculus

called JWA equipped with a rich type system (including product, sum, recursive

types, and [15] adds existential types). The bisimilarity respects the η-law, and the

congruence proof is done in terms of game semantics notions. Again, these papers

do not mention bisimulation up to context.

In [4], we define extensional enf bisimilarities and bisimulations up to context

for a call-by-value λ-calculus with delimited-control operators. The (unpublished)

congruence and soundness proofs follow [10], but are incorrect: one case in the

induction, that turns out to be problematic, has been forgotten. In [5] we fix the

congruence proof of the extensional bisimilarity, by doing a nested induction on a

different notion of closure than in [10]. This approach fails when proving soundness

of a bisimulation up to context, and therefore bisimulation up to context does not

respect the η-law in [5].

To summarize:

- The soundness proofs for extensional hnf bisimilarities are uniformly done using

a nested induction proof method [10,13]. The proof can then be turned into a

soundness proof for bisimulation up to context.

- The soundness proofs of extensional enf bisimilarities either follow from a CPS

translation [11,13], or other ad-hoc arguments [22,14,15,5] which do not carry

over to a soundness proof for a bisimulation up to context.

- The only claims about congruence of an extensional enf bisimilarity as well as

soundness of the corresponding bisimulation up to context using a nested induc-
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tion proof are either wrong [4] or are not substantiated by a presentation of the

actual proof [11]. The reason the nested induction proof works for extensional

hnf bisimilarities and not for extensional enf bisimilarities stems from the differ-

ence in the requirements on the shape of λ-abstractions the two normal forms

impose: whereas the body of a λ-abstraction in hnf is also a hnf, the body of a

λ-abstraction in enf is an arbitrary term.

In this paper, we consider an extensional enf bisimilarity for two calculi: the plain λ-

calculus and its extension with delimited continuations, and in each case we present

a soundness proof of the corresponding enf bisimulation up to context from which

congruence of the bisimilarity follows.

3 Call-by-value λ-calculus

In this section we introduce a new approach to normal-form bisimulations that is

based on the framework we developed in [2]. The calculus of discourse is the plain

call-by-value λ-calculus.

3.1 Syntax, semantics, and normal-form bisimulations

We let x, y, z range over variables. The syntax of terms (t, s), values (v, w), and

call-by-value evaluation contexts (E) is given as follows:

t, s ::= v | t s v, w ::= x | λx.t E ::= � | E t | v E

An abstraction λx.t binds x in t; a variable that is not bound is called free. The

set of free variables in a term t is written fv(t). We work modulo α-conversion of

bound variables, and a variable is called fresh if it does not occur in the terms under

consideration. Contexts are represented outside-in, and we write E[t] for plugging a

term in a context. We write t{v/x} for the capture-avoiding substitution of v for x

in t. We write successive λ-abstractions λx.λy.t as λxy.t.

We consider a call-by-value reduction semantics for the language

E[(λx.t) v]→ E[t{v/x}]

We write →∗ for the reflexive and transitive closure of →, and t ⇓ s if t→∗ s and s

cannot reduce; we say that t evaluates to s.

Eager normal forms are either values or open stuck terms of the form E[x v].

Normal-form bisimilarity relates terms by comparing their normal forms (if they ex-

ist). For values, a first possibility is to relate separately variables and λ-abstractions:

a variable x can be equated only to x, and λx.t is bisimilar to λx.s if t is bisimi-

lar to s. As explained in the introduction, this does not respect η-expansion: the

η-respecting definition compares values by applying to a fresh variable. Given a

relation R on terms, we reflect how values and open stuck terms are tested by the

relations Rv, Rctx, and Ro, defined as follows:

5



Biernacki, Lenglet, and Polesiuk

v x R w x x fresh

v Rv w

E[x] R E′[x] x fresh

E Rctx E′
E Rctx E′ v Rv w

E[x v] Ro E′[x w]

We can now define (extensional) normal-form bisimulation and bisimilarity, us-

ing a notion of progress.

Definition 3.1 A relation R progresses to S if t R s implies:

• if t→ t′, then there exists s′ such that s→∗ s′ and t′ S s′;
• if t = v, then there exists w such that s ⇓ w, and v Sv w;

• if t = E[x v], then there exist E′, w such that s ⇓ E′[x w] and E[x v] So E′[x w];

• the converse of the above conditions on s.

A bisimulation is then defined as a relation which progresses to itself, and

bisimilarity—as the union of all bisimulations. Our definition is in a small-step

style, unlike in [11], as we believe small-step is more flexible, since we can recover a

big-step reasoning with bisimulation up to reduction (Section 3.3). In usual defini-

tions [11,22,5], the β-reduction is directly performed when a λ-abstraction is applied

to a fresh variable, whereas we construct an application in order to uniformly treat

all kinds of values, and hence account for η-expansion. However, with this approach

a naive definition of bisimulation up to context would be unsound because it would

equate any two values: if v and w are related, then v x and w x are related up to

context. In our framework, we prevent this issue as explained after Definition 3.2.

We now recast the definition of normal-form bisimilarity in the framework of [2],

which is itself an extension of a work by Madiot et al. [16,17]. The goal is to factorize

the congruence proof of the bisimilarity with the soundness proofs of the up-to

techniques. The novelty in [2] is that we distinguish between active and passive

clauses, and we forbid some up-to techniques to be applied in a passive clause.

Whereas this distinction does not change the notions of bisimulation or bisimilarity,

it has an impact on the bisimilarity congruence proof.

Definition 3.2 A relation R diacritically progresses to S, T written R�� S, T , if

R ⊆ S, S ⊆ T , and t R s implies:

• if t→ t′, then there exists s′ such that s→∗ s′ and t′ T s′;

• if t = v, then there exists w such that s ⇓ w, and v Sv w;

• if t = E[x v], then there exist E′, w such that s ⇓ E′[x w] and E[x v] T o E′[x w];

• the converse of the above conditions on s.

An normal-form bisimulation is a relationR such that R�� R,R, and normal-form

bisimilarity ≈ is the union of all normal-form bisimulations.

The difference between Definitions 3.2 and 3.1 is only in the clause for values,

where we progress towards a different relation than in the other clauses of Defini-

tion 3.2. We say that the clause for values is passive, while the others are active. A

bisimulation R progresses towards R in passive and active clauses, so the two defi-

nitions generate the same bisimilarity. However, we prevent some up-to techniques
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from being applied in a passive clause. In particular, up to context is not allowed,

as explained in Section 3.3, meaning that we cannot deduce that v x and w x are

related up to context just because v and w are related. In contrast, we allow any

up-to techniques when we test a value in the open stuck term case, since we cannot

deduce from E[x v] related to E′[x w] that v y and w y are related up to context.

Example 3.3 Let θ
def
= λzx.x λy.z z x y and fix(v)

def
= λx.θ θ v x for a given v; note

that fix(v) x →∗ v fix(v) x. Wadsworth’s infinite η-expansion combinator [3] can

be defined as J
def
= fix(λfxy.x (f y)). Let I def

= {(t, t) | t any term} be the identity

bisimulation. We prove that λx.x ≈ J, by showing that

R def
= I ∪ {(λx.x, J)} ∪ {(t, s) | (λx.x) y →∗ t, J y →∗ s, y fresh}

∪ {(y z, t) | (λx.y (J x)) z →∗ t, y, z fresh}

is a bisimulation. Indeed, to compare λx.x and J, we have to relate (λx.x) y and

J y, but J y →∗ λx.y (J x). We then have to equate y z and (λx.y (J x)) z, the latter

evaluating to y λx.z (J x). To relate these open stuck terms, we have to equate �
and � (with I), and z with λx.z (J x), but these terms are already in R. As

usual, the quite lengthy definition of R can be simplified with up-to techniques (see

Example 3.13). 2

3.2 Up-to techniques, general definitions

We recall here the main definitions we use from [2]. The goal of up-to techniques is to

simplify bisimulation proofs: instead of proving that a relation R is a bisimulation,

we show that R respects some looser constraints which still imply bisimilarity. In

our setting, we distinguish the up-to techniques which can be used in passive clauses

(called strong up-to techniques), from the ones which cannot. An up-to technique

(resp. strong up-to technique) is a function f such that R �� R, f(R) (resp. R
�� f(R), f(R)) implies R ⊆ ≈. Proving that a given f is an up-to technique is

difficult with this definition, so following [19,16], we rely on a notion of compatibility

instead, which gives sufficient conditions for f to be an up-to technique.

We first define some auxiliary notions and notations. We write f ⊆ g if f(R) ⊆
g(R) for all R. We define f ∪ g argument-wise, i.e., (f ∪ g)(R) = f(R)∪ g(R), and

given a set F of functions, we also write F for the function defined as
⋃
f∈F f . We

define fω as
⋃
n∈N f

n. We write id for the identity function on relations, and f̂ for

f ∪ id. A function f is monotone if R ⊆ S implies f(R)⊆ f(S). We write Pfin(R)

for the set of finite subsets of R, and we say f is continuous if it can be defined by its

image on these finite subsets, i.e., if f(R)⊆
⋃
S∈Pfin(R) f(S). The up-to techniques

of the present paper are defined by inference rules with a finite number of premises,

so they are trivially continuous. Continuous functions are interesting because of

their properties: 8

Lemma 3.4 If f and g are continuous, then f ◦ g and f ∪ g are continuous.

If f is continuous, then f is monotone, and f ◦ f̂ω ⊆ f̂ω.

8 Our formalization revealed an error in previous works [2,17] which use f instead of f̂ in the last property

of Lemma 3.4 (expressing idempotence of f̂ω)—id has to be factored in for the property to hold.
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Definition 3.5 A function f evolves to g, h, written f g, h, if for all R�� R, T ,

we have f(R)�� g(R), h(T ). A function f strongly evolves to g, h, written f s g, h,

if for all R�� S, T , we have f(R)�� g(S), h(T ).

Evolution can be seen as a notion of progress for functions on relations. Note that

strong evolution does not put any condition on how R progresses, while regular

evolution is more restricted, as it requires a relation R such that R�� R, T .

Definition 3.6 A set F of continuous functions is diacritically compatible if there

exists S such that S ⊆ F and

• for all f ∈ S, we have f s Ŝ
ω, F̂ω;

• for all f ∈ F, we have f Ŝω ◦ F̂ ◦ Ŝω, F̂ω.

In words, a function is in a compatible set F if it evolves towards a combination

of functions in F. The (possibly empty) subset S intuitively represents the strong

up-to techniques of F. Any combination of functions can be used in an active clause.

In a passive one, only strong functions can be used, except in the second case, where

we progress from f(R), with f not strong. In that case, it is expected to progress

towards a combination that includes f ; it is safe to do so, as long as f (or in fact,

any non-strong function in F) is used at most once. If S1 and S2 are subsets of F

which verify the conditions of the definition, then S1∪S2 also does, so there exists

the largest subset of F which satisfies the conditions, written strong(F).

Lemma 3.7 Let F be a diacritically compatible set.

• If R�� ̂strong(F)
ω
(R), F̂ω(R), then F̂ω(R) is a bisimulation.

• If f ∈ F, then f is an up-to technique. If f ∈ strong(F), then f is a strong up-to

technique.

• For all f ∈ F, we have f(≈)⊆ ≈.

The proof takes advantage of Lemma 3.4. In practice, proving that f is in a com-

patible set F is easier than proving it is an up-to technique. Besides, if we prove

that a bisimulation up to context is compatible, then we get for free that ≈ is a

congruence thanks to the last property of Lemma 3.7.

3.3 Up-to techniques for normal-form bisimilarity

Figure 1 presents the up-to techniques we define for the λ-calculus. Combined

altogether, they define a closure as in the nested induction proof method [10,13]; we

use a more fine-grained approach to distinguish between strong and regular up-to

techniques. As in [10,13,5], we use the substitutive closure subst. We also rely on the

closure by evaluation contexts ectx, which is less common, but already used in [5].

The closure ectx is not the same as bisimulation up to context, since we can factor

out different contexts, as long as they are related when we plug a fresh variable

inside them. The technique red, used in the compatibility proofs, is the classic

bisimulation up to reduction, which allows terms to reduce before being related.

Theorem 3.8 The set F
def
= {refl, app, lam, subst, ectx, id, red} is diacritically com-

patible, with strong(F) = {refl, lam, subst, id, red}.

8
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t refl(R) t

t R t′ s R s′

t s app(R) t′ s′
t R s

λx.t lam(R) λx.s

t R s v Rv w

t{v/x} subst(R) s{w/x}
t R s E Rctx E′

E[t] ectx(R) E′[s]

t→∗ t′ s→∗ s′ t′ R s′

t red(R) s

Fig. 1: Up-to techniques for the λ-calculus

The complete proof of Theorem 3.8 can be found in the Coq formalization. We

sketch some of the compatibility proofs to show how proofs are done in our frame-

work, in particular the crucial case of app, where we need the distinction between

active and passive tests. We compare ourselves to the proof technique of [10], which

would do an induction on the definition of the closure using Definition 3.1. We do

not need an induction on the number of evaluation steps for our small-step defini-

tion, but a nested induction proof for a big-step relation would exhibit the same

issues. The strong up-to techniques lam, refl, and red are easy to deal with; we

detail the proof for lam.

Lemma 3.9 lam s lam ∪ red, lam ∪ red.

Proof. Let R�� S, T ; we want to prove that lam(R)�� lam(S) ∪ red(S), lam(T )

∪ red(T ). The inclusions lam(R) ⊆ lam(S) ∪ red(S) and lam(S) ∪ red(S) ⊆ lam(T )

∪ red(T ) hold because R ⊆ S, S ⊆ T (by definition of ��) and the functions are

monotone. Next, let λx.t lam(R) λx.s such that t R s. The only clause to check

is the one for values: we have (λx.t) x → t and (λx.s) x → s, i.e., (λx.t) x red(R)

(λx.s)x, which implies (λx.t)x red(S) (λx.s)x becauseR ⊆ S and red is monotone.2

We now sketch the proof for subst. The proof method is by case analysis on the

related terms, similar to what one would do in the proof by induction of [10].

Lemma 3.10 subst s subst, (id ∪ ectx) ◦ subst ◦(id ∪ subst).

Proof (Sketch) Let R�� S, T , and t{v/x} subst(R) s{w/x} such that t R s and

v Rv w. We check the different clauses by case analysis on t. If t is a value, then

there exists a value s′ such that s ⇓ s′ and t Rv s′. But then t{v/x} and s′{w/x}
are also values, and then we can prove that t{v/x} subst(S)v s′{w/x} holds. If

t → t′, then there exists s′ such that s →∗ s′ and t′ T s′. Then t{v/x} → t′{v/x},
s{w/x} →∗ s′{w/x}, and t′{v/x} subst(T ) s′{w/x}.

Finally, if t = E[y v′], then there exists s′ such that s ⇓ s′ and t T o s′. If y 6= x,

then t{v/x} and s′{w/x} are open stuck terms in subst(T )o. Otherwise, we distin-

guish cases based on whether v is a λ-abstraction or not. In the former case, let v =

λz.t′, s′ = E′[x w′]. Then t{v/x} = E{v/x}[v v′{v/x}] → E{v/x}[t′{v′{v/x}/z}].
From v Rv w and v z → t′, we know that there exists s′′ such that w z →∗ s′′ and

t′ T s′′. Consequently, we have s{w/x} →∗ s′{w/x} = E′{w/x}[w w′{w/x}] →∗

9
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E′{w/x}[s′′{w′{w/x}/z}]. Then E{v/x}[x′] subst(T ) E{w/x}[x′] for a fresh x′,

but also t′{v′{v/x}/z} subst(subst(T )) s′′{w′{w/x}/z}, so after plugging, we ob-

tain terms in ectx ◦ subst ◦(id ∪ subst)(T ).

If v is a variable, a similar reasoning shows that t{v/x} and s′{w/x} evaluate

to open stuck terms, whose contexts are related by ectx ◦ subst ◦(id ∪ subst)(T ) and

whose arguments are related by subst(subst(T )). 2

The proof for subst does not require the clause for values to be passive, and is

thus similar to the corresponding case of an induction proof [10]. In contrast, we

need testing values to be passive when dealing with app and ectx; we present the

problematic subcase in the proof below. We do not know how to make this subcase

go through in a proof as in [10].

Lemma 3.11 app app, app ∪ subst ∪ ectx ∪ (id ∪ ectx) ◦ subst ◦(id ∪ subst).

Proof (Sketch) Let R �� R,S, and t1 s1 app(R) t2 s2 such that t1 R t2 and

s1 R s2. We proceed by case analysis on t1 and s1. Most cases are straightforward;

the problematic case is when t1 is a variable x and s1 a value w1. Because t1 R t2 and

s1 R s2, there exists v2 and w2 such that t2 ⇓ v2, s2 ⇓ w2, x Rv v2, and w1 Rv w2.

From x Rv v2, we have x y R v2 y for a fresh y, and therefore x w1 subst(R) v2 w2.

We can conclude using Lemma 3.10: there exists an open stuck term s′ such that

t2 s2 →∗ v2 s2 →∗ v2 w2 →∗ s′ and x v2 ((id ∪ ectx) ◦ subst ◦(id ∪ subst)(S))o s′.

In an induction proof with Definition 3.1, we would have in that case x y S v2 y

and w1 Sv w2 instead of R. We do not see how to go further in the case w1 is a

λ-abstraction λx.t: we have to prove that t{w2/x} evaluates to an open stuck term,

but we do not have any progress hypothesis about S. 2

The technique ectx exhibits a similar problematic subcase, when E = � v and

t = x. We obtain the following corollary that follows from Theorem 3.8 (refl, lam
and app are compatible) and Lemma 3.7 (the third item).

Corollary 3.12 ≈ is a congruence.

This corollary, in turn, immediately implies the soundness of ≈ w.r.t. the usual con-

textual equivalence of the λ-calculus, where we observe termination of evaluation [1].

However, as proved in [11], ≈ is not complete w.r.t. contextual equivalence.

Example 3.13 We can simplify the definition of R in Example 3.3 to just R def
=

{(λx.x, J), (y, λx.y (J x)) | y fresh} and show that R is a bisimulation up to refl

and red. To illustrate how bisimulation up to context can help, we define v
def
=

fix(λzxy.z x) and w
def
= fix(λzxy.z (J x)) and prove that these values are bisimilar by

showing that R′ def= {(v, w), (v x,wx), ((λy.v x)z, (λy.w (Jx))z) | x, z fresh}∪ R is a

bisimulation up to ectx, refl, and red. Indeed, we have vx→∗ (λzxy.zx)vx→∗ λy.vx
and w x →∗ (λzxy.z (J x)) w x →∗ λy.w (J x). To relate the two resulting values,

we compare (λy.v x) z and (λy.w (J x)) z for a fresh z. These terms reduce to

respectively v x and w (J x), which are in ectx(R′), because v y R′ w y for a fresh y

and x R J x. Without ectx, we would have to reduce these terms further and

continue the bisimulation game. Note that we use ectx after a reduction step, i.e.,

10
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in an active clause. We also have (λy.v x) z red(ectx(R)) (λy.w (J x)) z, but we

cannot conclude with this, as we would use ectx in the passive clause for values. 2

4 Delimited-control operators

In this section we turn to the call-by-value λ-calculus extended with shift and

reset [6,5]. We show that the results of Section 3 seamlessly carry over to this

calculus, thus demonstrating the robustness of the approach, but also improving on

the previous results on extensional normal-form bisimulations for this calculus [5].

4.1 Syntax, semantics, and normal-form bisimulations

We extend the grammar of terms and values given in Section 3 as follows:

t, s ::= . . . | 〈t〉 v, w ::= . . . | S

where 〈·〉 is the control delimiter reset and S is the delimited-control operator

shift. Usually, shift is presented as a binder Sx.t [6,5] or as a special form S t [7],

but here we choose a more liberal syntax treating shift as a value (as, e.g., in [8]).

This makes the calculus a little more interesting since shift becomes a subject to

η-expansion just as any other value, and moreover it makes it possible to study

terms such as S S. We call pure terms effect-free terms, i.e., values and terms of

the form 〈t〉.
We distinguish a subclass of pure contexts (E) among evaluation contexts (F ):

E ::= � | v E | E t F ::= � | v F | F t | 〈F 〉

We extend the function fv to both kinds of contexts. Note that an evaluation

context F is either pure or can be written F ′[〈E′〉] for some F ′ and E′. Pure

contexts can be captured by S, as we can see in the following rules defining the

call-by-value left-to-right reduction semantics of the calculus:

F [(λx.t) v] → F [t{v/x}]

F [〈E[S v]〉] → F [〈v λx.〈E[x]〉〉] with x 6∈ fv(E)

F [〈v〉] → F [v]

The first rule is the usual call-by-value β-reduction. When S is applied to a value v,

it captures its surrounding pure context E up to the dynamically nearest enclosing

reset, and provides its term representation λx.〈E[x]〉 as an argument to v. Finally,

a reset which encloses a value can be removed, since the delimited subcomputation

is finished. All these reductions may occur within a metalevel context F that

encodes the chosen call-by-value evaluation strategy. As in Section 3, the reduction

relation → is preserved by evaluation contexts.

Example 4.1 This example illustrates the operational behavior of S as a value:

〈E[S S]〉 → 〈S λx.〈E[x]〉〉 → 〈(λx.〈E[x]〉) (λx.〈x〉)〉 → 〈〈E[λx.〈x〉]〉〉
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In particular, if E = �, then the value of the initial term is λx.〈x〉, i.e., the repre-

sentation of the empty context. 2

A term t either uniquely reduces to another term, or is an eager normal form: it

is either a value v, an open stuck term F [x v], or a control-stuck term E[S v]. The

latter cannot reduce further since it lacks a reset enclosing S. Because shift can

decompose contexts, we have to change the relation Rctx as discussed in [5]:

E[x] R E′[x] x fresh

E Rctx E′
〈E[x]〉 R 〈E′[x]〉 F [x] R F ′[x] x fresh

F [〈E〉] Rctx F ′[〈E′〉]

We also introduce a relation Rc to handle control-stuck terms:

E Rctx E′ 〈v x〉 R 〈w x〉 x fresh

E[S v] Rc E′[S w]

whereas the relation Rv remains unchanged, so that it accounts for the η-law, even

though the values now include S.

We can now define (extensional) normal-form bisimulation and bisimilarity for

the extended calculus, again using the notion of diacritical progress.

Definition 4.2 A relation R diacritically progresses to S, T written R�� S, T , if

R ⊆ S, S ⊆ T , and t R s implies:

• if t→ t′, then there exists s′ such that s→∗ s′ and t′ T s′;

• if t = v, then there exists w such that s ⇓ w, and v Sv w;

• if t = F [x v], then there exist F ′, w such that s ⇓ F ′[x w] and F [x v] T o F ′[x w];

• if t = E[S v], then there exist E′, w such that s ⇓ E′[S w] and E[S v] T c E′[S w];

• the converse of the above conditions on s.

A normal-form bisimulation is a relation R such that R�� R,R, and normal-form

bisimilarity ≈ is the union of all normal-form bisimulations.

Note that only the clause for values is passive, as in Definition 3.2.

Example 4.3 The terms S S and S (λk.k (λx.x)) are bisimilar since the following

relation is a normal-form bisimulation:

I ∪ { (S S, S (λk.k (λx.x))), (1)

(〈S z〉, 〈(λk.k (λx.x)) z〉), (2)

(〈z (λx.〈x〉)〉, 〈z (λx.x)〉), (3)

((λx.〈x〉) y, (λx.x) y), (4)

(〈y〉, y) } (5)

where I is the identity relation and x, y, and z fresh variables. In (1) we compare two

control-stuck terms, so to validate the bisimulation conditions, we have to compare

the two empty contexts (which are in Ictx) and the arguments of shift. Here,
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t R s E Rctx E′

E[t] pctx(R) E′[s]

t R s 〈E〉 Rctx 〈E′〉
〈E[t]〉 pctxrst(R) 〈E′[s]〉

t R s t, s pure F [x] R F ′[x] x fresh

F [t] ectxpure(R) F ′[s]

Fig. 2: Up-to techniques specific to the λ-calculus extended with shift and reset

extensionality plays an important role, as these arguments are of different kinds (S
vs a λ-abstraction). We compare them by passing them a fresh variable z, thus we

include the pair (2) in the bisimulation. The terms of (2) can be reduced to those

in (3), where we compare open stuck terms, so we have to include (4) to compare

the arguments of z. The terms in (4) can then be reduced to the ones in (5) which

in turn reduce to identical terms. 2

4.2 Up-to techniques

The up-to techniques we consider for this calculus are the same as in Figure 1, except

we replace ectx by three more fine-grained up-to techniques defined in Figure 2.

The techniques pctx, pctxrst allow to factor out related pure contexts and pure

contexts with a surrounding reset. The third one (ectxpure) can be used only with

pure terms, but uses a naive comparison between any evaluation contexts instead

of ·ctx. Indeed, a pure term cannot evaluate to a control-stuck term, so decomposing

contexts with ·ctx is not necessary. The usual bisimulation up to evaluation context

ectx can be obtained by composing these three up-to techniques.

Lemma 4.4 If t R t′ and F Rctx F ′ then F [t] (pctx ∪ (ectxpure ◦ pctxrst))(R)

F ′[t′].

Note that we do not define extra up-to techniques corresponding to the new con-

structs of the language: shift is dealt with like variables—using refl, and con-

gruence w.r.t. reset can be deduced from pctxrst by taking the empty context.

Defining a dedicated up-to technique for reset would have some merit since it

could be proved strong. It is not so for pctxrst, as we can see in the next theorem:

Theorem 4.5 The set F
def
= {refl, app, lam, subst, pctx, pctxrst, ectxpure, id, red} is

diacritically compatible, with strong(F) = {refl, lam, subst, id, red}.

The evolution proofs are as in the pure λ-calculus, by case analysis on the possible

reductions that the related terms can do. The techniques app, pctx, pctxrst, and

ectxpure are not strong as they exhibit the same problematic case presented in

Lemma 3.11 (for app, pctx, and ectxpure) or a slight variant (〈E〉 = 〈� v〉 and t = x

for pctxrst). As in Section 3, from Theorem 4.5 and Lemma 3.7 it follows that ≈ is

a congruence, and, therefore, is sound w.r.t. the contextual equivalence of [5]; it is

not complete as showed in op. cit.

Example 4.6 With these up-to techniques, we can simplify the bisimulation of

Example 4.3 to just a single pair R def
= {(S S,S (λk.k (λx.x)))}. Indeed, we have
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λx.〈x〉 lam(red(refl(R))) λx.x, and z � refl(R)ctx z �, so (3) is in f(R), where

f
def
= pctxrst ◦(refl∪ (lam ◦ red ◦ refl)). Then, (2) is in red(f(R)), and for (1), we have

also to relate � with �, thus (1) is in refl(R) ∪ red(f(R)). As a result, R is a

bisimulation up to red, refl, pctxrst, and lam. 2

5 Conclusion

In this article we present a new approach to proving soundness of normal-form

bisimilarities as well as of bisimulations up to context that allow for η-expansion.

The method we develop is based on our framework [2] that generalizes the work

of Madiot et al. [16,17] in that it allows for a special treatment of some of the

clauses in the definition of bisimulation. In particular, we show soundness of an

extensional bisimilarity for the call-by-value λ-calculus and of the corresponding

bisimulation up to context, where it is critical that comparing values in a way that

respects η-expansion is done passively, i.e., by requiring progress of a relation to

itself. Following the same route, we obtained similar results for the extension of

the call-by-value λ-calculus with delimited control, where the set of normal forms

is richer, and we believe this provides an evidence for the robustness of the method.

To the best of our knowledge, there has been no soundness proof of extensional

normal-form bisimulation up to context for any of the two calculi before.

The proof method we propose should trivially apply to the existing non-exten-

sional whnf bisimilarities [9,10,12] and extensional hnf bisimilarities [10,13] for the

λ-calculus and its variants. Since whnf bisimilarities do not take into account η-

expansion, their testing of values would be active and all their up-to techniques

would be strong, so actually Madiot’s original framework is sufficient to account for

them. In the case of extensional hnf bisimilarities, normal forms are generated by

the grammar:

h ::= λx.h | n n ::= x | n t
and in order to account for η-expansion a λ-abstraction λx.h is related to a normal

form n, provided h is related to nx, a freshly created normal form. Thus, in exten-

sional enf bisimulations the relation on normal forms provides enough information

to make testing of normal forms active just like in whnf bisimulations.

A future work that seems a worthwhile task would be to tackle the complete enf

bisimilarity for the λµρ-calculus of sequential control and state [22]. It would be

interesting to investigate whether our method can be adapted to the ‘relation-set’

structure of bisimulations that capture the behavior of mutable references.
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