On Coalgebraic Logic over Posets

Adriana Balan¹ Alexander Kurz² Jiří Velebil³

¹University Politehnica of Bucharest, Romania

²University of Leicester, UK

³Czech Technical University in Prague, Czech Republic

CMCS 2012, Tallinn, Estonia

(4) (1) (4) (4)

- Expressivity of Coalgebraic Logic over Poset (Kapulkin-Kurz-Velebil, CMCS2010)
- Finitary Functors: from Set to Preord and Poset (Balan-Kurz, CALCO2011)

< 注→ < 注→

Why posets?

Modal Logic Want coalgebraic logic over posets to naturally generalize positive modal logic (Dunn 95).

- Coalgebras Looking at simulations instead of bisimulations? Then use posets as base.
- Category Theory Start with existing results on coalgebraic logics. Replace then Set by Poset.

- 4 E b 4 E b

Why posets?

Modal Logic Want coalgebraic logic over posets to naturally generalize positive modal logic (Dunn 95).

- Coalgebras Looking at simulations instead of bisimulations? Then use posets as base.
- Category Theory Start with existing results on coalgebraic logics. Replace then Set by Poset.

Work setting: enriched category theory over Poset

.

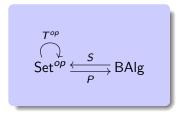
Coalgebraic logic for Set-functors

$$\operatorname{Set}^{op} \xrightarrow{S} \operatorname{BAlg}$$

- *P* maps a set to the BAlg of its subsets.
- *S'* associates to any BAlg the set of ultrafilters.

< ≣ > <

Coalgebraic logic for Set-functors



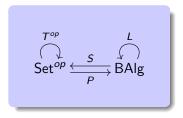
Coalgebras:

- States: set X
- Dynamics: map $X \to TX$

- *P* maps a set to the BAlg of its subsets.
- S' associates to any BAlg the set of ultrafilters.

★ 문 ► ★ 문

Coalgebraic logic for Set-functors



- *P* maps a set to the BAlg of its subsets.
- S' associates to any BAlg the set of ultrafilters.

Coalgebras:

- States: set X
- Dynamics: map $X \to TX$

Abstract logic: (L, δ) , where $L : BAlg \to BAlg$ is a functor and $\delta : LP \to PT^{op}$ a natural transformation.

Finitary coalgebraic logic: $L = PT^{op}S$ on finitely generated free BAlg, then canonically extended to all BAlg.

イロン 不同と 不同と 不同と

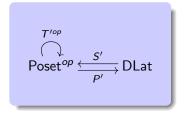
Coalgebraic logic for Poset-functors

$$\mathsf{Poset}^{op} \xrightarrow{S'} \mathsf{DLat}$$

- Enriched adjunction
- P' maps a poset to the DLat of its upsets.
- S' associates to any DLat the poset of prime filters.

4 B 🕨 4

Coalgebraic logic for Poset-functors

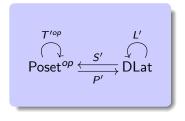


- Enriched adjunction
- P' maps a poset to the DLat of its upsets.
- S' associates to any DLat the poset of prime filters.
- T' locally monotone

Coalgebras:

- States: poset $\mathbb{X} = (X, \leq)$
- Dynamics: monotone transition map $\mathbb{X} \to \mathcal{T}'\mathbb{X}$

Coalgebraic logic for Poset-functors



• Enriched adjunction

- *P'* maps a poset to the DLat of its upsets.
- S' associates to any DLat the poset of prime filters.
- T' locally monotone
- L' locally monotone

Coalgebras:

- States: poset $\mathbb{X} = (X, \leq)$
- \bullet Dynamics: monotone transition map $\mathbb{X} \to \mathcal{T}'\mathbb{X}$

Abstract logic: (L', δ') , where $L' : DLat \to DLat$ is a functor and $\delta : L'P' \to P'T'^{op}$ a natural transformation.

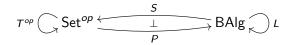
Finitary coalgebraic logic: $L' = P'T'^{op}S'$ on finitely generated free DLat, then canonically extended to all DLat.

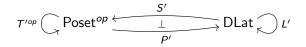
A. Balan, A. Kurz, J. Velebil ()

On Coalgebraic Logic over Posets

CMCS2012 5 / 13

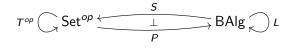
Two logical connections...



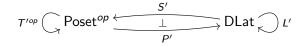


▲ 王 シ ミ シ へ ○
 CMCS2012 6 / 13

Two logical connections...



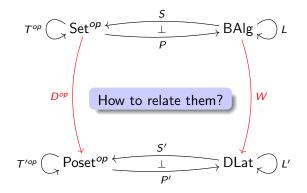
How to relate them?



CMCS2012 6 / 13

(本間) (本語) (本語)

Two logical connections...



CMCS2012 6 / 13

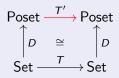
< ∃ >

Coalgebraic side: extensions and posetifications

We fix a *Set*-functor T.

Definition (Balan-Kurz, CALCO2011)

An extension of T is a locally monotone functor T': Poset \rightarrow Poset such that $DT \cong T'D$.



イロン イヨン イヨン イヨン

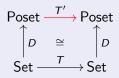
An extension T' is called the posetification of T, if the above square exhibits T' as the Poset-enriched Lan_DDT.

Coalgebraic side: extensions and posetifications

We fix a *Set*-functor T.

```
Definition (Balan-Kurz, CALCO2011)
```

An extension of T is a *locally* monotone functor T': Poset \rightarrow Poset such that $DT \cong T'D$.



・ロト ・回ト ・ヨト ・ヨト

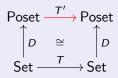
An extension T' is called the posetification of T, if the above square exhibits T' as the Poset-enriched Lan_DDT.

Coalgebraic side: extensions and posetifications

We fix a *Set*-functor T.

```
Definition (Balan-Kurz, CALCO2011)
```

An extension of T is a *locally* monotone functor T': Poset \rightarrow Poset such that $DT \cong T'D$.



(ロ) (同) (E) (E) (E)

An extension T' is called the posetification of T, if the above square exhibits T' as the Poset-enriched Lan_DDT.

Fact: For each Set-functor T, the posetification $\text{Lan}_D DT$ exists (this follows from general enriched category theory, because the discrete functor D: Set \rightarrow Poset is dense).

Examples

$T = \mathrm{Id}$

Then the discrete connected components functor DC and the upsets-functor Up are both extensions of T, while $Id : Poset \rightarrow Poset$ is the posetification.

T = P, the (finite) power-set functor
 Then its posetification is the (finitely generated) convex power-set functor, with the Egli-Milner order.

A B M A B M

Relating abstract logics

 $T: \mathsf{Set} \to \mathsf{Set}$ with logic (L, δ)

T': Poset \rightarrow Poset extension of T with logic (L', δ')

Definition

L' is a positive fragment of L if there is a natural transformation $L'W \Rightarrow WL$ commuting appropriately with δ and δ' .

 $\begin{array}{c} T^{op} \bigoplus \operatorname{Set}^{op} & \longleftrightarrow & \operatorname{BAlg} & \downarrow L \\ D & \downarrow & \psi \\ T'^{op} \bigoplus \operatorname{Poset}^{op} & \longleftrightarrow & \operatorname{DLat} & \downarrow L' \end{array}$

Relating abstract logics

 $T: \mathsf{Set} \to \mathsf{Set}$ with logic (L, δ)

T': Poset \rightarrow Poset extension of T with logic (L', δ')

Definition

L' is a positive fragment of L if there is a natural transformation $L'W \Rightarrow WL$ commuting appropriately with δ and δ' .

 $\begin{array}{c} \mathcal{T}^{op} \bigodot \operatorname{Set}^{op} & \longleftrightarrow & \operatorname{BAlg} \swarrow \mathcal{L} \\ D \downarrow & \downarrow \mathcal{W} \\ \mathcal{T}'^{op} \bigodot \operatorname{Poset}^{op} & \longleftrightarrow & \operatorname{DLat} \swarrow \mathcal{L}' \end{array}$

L' is the positive fragment of L if $L'W \Rightarrow WL$ is an isomorphism.

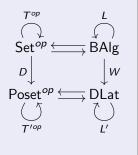
Main result

Theorem

Given the following:

- T any Set-functor
- T' extension of T
- (L,δ) and (L',δ') the finitary logics of T and T'
- T' preserves coreflexive equalizers

Then L' is the positive fragment of L, i.e. $WL \cong L'W$.



In particular, the above holds if T preserves weak pullbacks, and T' is the posetification of T.

イロト イヨト イヨト イヨト

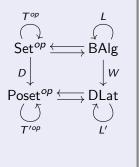
Main result

Theorem

Given the following:

- T any Set-functor
- T' extension of T
- (L,δ) and (L',δ') the finitary logics of T and T'
- T' preserves coreflexive equalizers

Then L' is the positive fragment of L, i.e. $WL \cong L'W$.



In particular, the above holds if T preserves weak pullbacks, and T' is the posetification of T.

イロト イヨト イヨト イヨト

Example

• $T = \mathcal{P}$ (finite) powerset functor

Logics: *LA* is the BA generated by $\Box a$, for $a \in A$, wrt \Box preserving finite meets.

Semantics: $\delta_X : LPX \to P\mathcal{P}X, \quad \Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\}$

• Posetification: $T' = \mathcal{P}_c$ (finitely generated) convex powerset functor

Logics: L'A is the DLat generated by $\Box a$ and $\Diamond a$, for all $a \in A$, wrt \Box preserving finite meets, \Diamond preserving finite joins, and

 $\Box a \land \Diamond b \leq \Diamond (a \land b) \qquad \Box (a \lor b) \leq \Diamond a \lor \Box b$ Semantics: $\delta'_X : L'P'X \to P'\mathcal{P}'X, \qquad \begin{cases} \Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\} \\ \Diamond a \mapsto \{b \in \mathcal{P}X \mid b \cap a \neq \emptyset\} \end{cases}$

(ロ) (同) (E) (E) (E)

Example

• $T = \mathcal{P}$ (finite) powerset functor

Logics: *LA* is the BA generated by $\Box a$, for $a \in A$, wrt \Box preserving finite meets.

Semantics: $\delta_X : LPX \to P\mathcal{P}X, \quad \Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\}$

• Posetification: $T' = P_c$ (finitely generated) convex powerset functor

Logics: L'A is the DLat generated by $\Box a$ and $\Diamond a$, for all $a \in A$, wrt \Box preserving finite meets, \Diamond preserving finite joins, and

$$\Box a \land \Diamond b \leq \Diamond (a \land b) \qquad \Box (a \lor b) \leq \Diamond a \lor \Box b$$

Semantics: $\delta'_X : L'P'X \to P'\mathcal{P}'X, \quad \begin{cases} \Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\} \\ \Diamond a \mapsto \{b \in \mathcal{P}X \mid b \cap a \neq \emptyset\} \end{cases}$

イロト イポト イヨト イヨト

Another example

- For T = Id, the corresponding finitary logics is L = Id on BA, with trivial semantics $\delta : LP \to PT$.
- Extension: T' = DC discrete connected components functor. T' does not preserve embeddings.

Logics: L' is the constant functor to 2.

 Thus L'W → WL fails to be an isomorphism (it is just the unique morphism from the initial object).

() < </p>

Another example

- For T = Id, the corresponding finitary logics is L = Id on BA, with trivial semantics $\delta : LP \to PT$.
- Extension: T' = DC discrete connected components functor. T' does not preserve embeddings.

Logics: L' is the constant functor to 2.

 Thus L'W → WL fails to be an isomorphism (it is just the unique morphism from the initial object).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Another example

- For T = Id, the corresponding finitary logics is L = Id on BA, with trivial semantics $\delta : LP \to PT$.
- Extension: T' = DC discrete connected components functor.
 T' does not preserve embeddings.

Logics: L' is the constant functor to 2.

 Thus L'W → WL fails to be an isomorphism (it is just the unique morphism from the initial object).

What next?

More examples for future study

- Kripke functors $\mathcal{K} ::= \mathrm{Id} \mid \mathcal{K}_X \mid \mathcal{K}_1 + \mathcal{K}_2 \mid \mathcal{K}_1 \times \mathcal{K}_2 \mid \mathcal{K}^A$
- T = D the (sub)distributions functor
- $T = Q^2$ double contravariant functor

Current and future work

- Characterize those Poset-functors that arise as posetifications.
- Improve the present results using logical connections.
- Describe logics and their properties for extensions and posetifications.

イロン イヨン イヨン イヨン