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Characterization of (Quasi-)Varieties Variety and quasivariety of algebras are classic
notions in universal algebra (see e.g. [3]). By definition, a variety is a full subcategory of
AlgΣ specified by a set of equations; a quasivariety is specified by a set of implications
∀~x
(
(
∧n
i=0 si = ti) → s = t

)
. Then the famous Birkhoff theorem characterizes varieties as

those which are closed under homomorphic images, subobjects and (arbitrary) products (H, S,
P in Table 1). A similar characterization is possible for quasivarieties (see [3]): see Table 1,
where FC means closure under filtered colimits.

These classic results are significantly extended through the development of categorical
model theory (see e.g. [3]). This accounts for the rows of Table 1 other than the first and
third rows.

I Definition 1 (orthogonality [9]; see also [10]). Let us fix a category A. LetM be a class of
morphisms in A; and X be a class of objects in A.

A morphism f : A → B and an object C are orthogonal (we write f ⊥ C) when
(−) ◦ f : Hom(B,C)→ Hom(A,C) is bijective.
X⊥ is the class of morphisms orthogonal to each object in X .
X is anM-orthogonality class if there is a subclassM′ ofM such that X =M′

⊥. An
orthogonality class is anM-orthogonality class whereM is the class of all morphisms.

In the second row of Table 1, a variety is characterized as anM-orthogonality class where
M is the class of regular epis f : FX � B from a free finitely presentable (FP) Σ-algebra
FX to an FP Σ-algebra B. For quasivarieties the domain need not be free. In the fourth
row of Table 1, furthermore, (quasi)varieties are identified with reflective subcategories of
AlgΣ that are epireflective (meaning that reflections are regular epis) and are subject to
additional closure requirements.

Besides these “extrinsic” characterizations, “intrinsic” ones are possible, too, that do not
depend on the ambient category AlgΣ. Varieties are Eilenberg-Moore categories for finitary

characterization variety sort-of-variety quasivariety prevariety [4]

extrinsic
(in AlgΣ)

logical (where equations ∀∃!-formulas implications preequations
E ≡

∧−−−→
s = t) s = t ∀~x ∃!~y E ∀~x (E → s = t) ∀~x (E → ∃!~y E′)

by orthogonality F X � B F X → B A� B A→ B

by closure prop-
erty

H, S & P ? S, P & FC A-pure S, P & FC

by reflectivity epirefl. & H ? epirefl. & FC reflective∗

intrinsic as a concrete cat. (finitary) monadic ? algebraic† ?
generator exactly proj. ? regularly proj. arbitrary†

Table 1 Characterizations of notions of variety. Here Σ is a finitary signature (i.e. every operation
has a finite arity). In ∗ we have to allow infinitary conjunction in E, E′, quantification over infinitely
many variables, and an additional size constraint called bounded generation [4] is imposed. In † we
allow classes of operations and equations, infinite arities and infinitary logic.
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monads; the notion of algebraicity (for quasivarieties) is found in [2]. Finally, the bottom
row of Table 1 presents characterization via generators [1].

Prevarieties Let us move on to the fourth column of Table 1. In [4] the notion of prevariety
is introduced. It is motivated via the characterization by reflectivity (the fourth row): by
dropping the epiness requirement we are led to prevarieties. It is shown in [4] that the notion
has a nice logical characterization—see the top-right cell, where the quantifier ∃! works much
like the definition of extra partial/conditional operations. Furthermore, for each cardinal λ,
it is shown that λ-ary prevarieties coincide with locally λ-presentable categories.

Just like the case of varieties and quasivarieties, (finitary) prevarieties can be characterized
asM-orthogonality classes whereM is the class of morphisms between FP Σ-algebras. They
also have characterizations by closure properties—as classes closed under A-pure subobjects
(defined in [4]), products and filtered colimits—and by generators. See [4].

Completing the Picture It is then natural to think of the intermediate notion—the second
row of Table 1—that we shall take the liberty of calling sort-of-variety. It is obtained from
prevarieties by prohibiting premises in preequations. Such ∀∃!-formulas are understood to
define extra total operations, unlike partial ones in prevarieties (cf. Proposition 4 later).

IDefinition 2. A sort-of-variety is a full subcategory of AlgΣ defined by a set of ∀∃!-formulas
∀~x ∃!~y (

∧n
i=0 si = ti).

We are yet to investigate the nature of sort-of-varieties—as witnessed by many “?” in
the second column of Table 1—let alone coming up with a proper name for the notion. In
the rest of this abstract, nevertheless, we shall list some facts that we already know.

Let us fix a signature Σ; the known relationships between the four columns (when seen
extrinsically as subcategories of AlgΣ) are as follows. Varieties are sort-of-varieties, since
every equation is a ∀∃!-formula (with no variables bound by ∃!). The converse is not true;
see Example 3.2. There are, too, sort-of-varieties that are not quasivarieties (Example 3.1).

I Example 3. 1. Let Σ = {·} be the signature for semigroups. The class of groups can be
specified by ∀∃!-formulas, in AlgΣ: associativity, ∀x ∀y ∃!z (x · z = y) and ∀x ∀y ∃!z (z ·
x = y). This class cannot be defined by implications in AlgΣ since it is not closed under
subsemigroups.

2. Let Σ = {+, 0} be the signature for monoids. The class of torsion-free abelian groups is a
sort-of-variety in AlgΣ. Indeed it is characterized by: the equations for commutative
monoids; invertibility ∀x ∃!y (x + y = 0); and torsion-freeness ∃!x (n · x = 0) for each
n ∈ N+ where n · x stands for x+ · · ·+ x (n times).

It follows from Def. 2 that a Σ-homomorphism preserves the extra operations introduced by
∀∃!-formulas. This, together with Example 3.1, explains an elementary phenomenon in group
theory that a map between groups that preserves multiplication is a group homomorphism.

Now let us investigate the relationships between the four columns of Table 1 when we
allow to change a signature Σ. From this intrinsic viewpoint, sort-of-varieties are indeed
quasivarieties.

I Proposition 4. Let A be a full subcategory of AlgΣ specified by a set of ∀∃!-formulas.
Then there exist: a signature Σ′ (such that Σ′ ⊇ Σ), and a full subcategory A′ of AlgΣ′

that is specified by implications, such that the canonical forgetful functor U : AlgΣ′ → AlgΣ
restricts to an isomorphism U ′ : A′ → A.
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Proof. Let E be the set of ∀∃!-formulas that defines A. For each φ ≡ ∀~x ∃!~y Eφ(~x, ~y) in
E , where ~x = (xi)ni=1 and ~y = (yj)mj=1, we introduce m operations ~fφ = (fφj )mj=1 of arity n.
Let Σ′ = Σ ∪ {fφj | φ, j}, and define E ′ to be the collection of formulas ∀~x Eφ(~x, ~fφ(~x))
together with ∀~x ∀~y

(
Eφ(~x, ~y)→ yj = fφj (~x)

)
, for each φ and j. It is easily checked that U ′

is well-defined, bijective on objects and fully faithful. J
Finally we notice that sort-of-varieties allow a characterization by orthogonality. The

proof is much like for prevarieties [4].

I Proposition 5. Sort-of-varieties are preciselyM-orthogonality classes in AlgΣ whereM
is the class of morphisms from a free FP Σ-algebra to an FP Σ-algebra.

Future Work Obviously we wish to complete Table 1, filling the “?” cells as well as getting
rid of ∗ and † (i.e. discovering suitable finitariness conditions).

In Proposition 4 we showed that a sort-of-variety in AlgΣ can be seen as a quasivariety
if we allow extension of the signature. Whether its inverse holds or not is open.

In fact, we arrived at the notion of sort-of-variety via our inspection of the works [7, 5, 6, 8]
of Battenfeld and Schröder. These works are based on categories of topological spaces (unlike
Set here); in [7, 8] they study so-called observationally-induced algebras that are characterized
by the same orthogonality as for sort-of-varieties. The current abstract contributes, in Set:
1) their logical characterization in terms of ∀∃!-formulas; and 2) putting the notion in a
context of various variety notions. Taking Table 1 to a topological setting and investigating
relationships to the results in [7, 5, 6, 8] is therefore obvious future work.
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